
Edited by:
Matteo Sacco

MIDA 2
Course Notes



These notes have been made thanks to the effort of Polimi Data Scientists staff.

Are you interested in Data Science activities?

Follow PoliMi Data Scientists on Facebook!

Polimi Data Scientist is a community of students and Alumni of Politecnico di Milano.

We organize events and activities related to Artificial Intelligence and Machine Learning, our aim is to
create a strong and passionate community about Data Science at Politecnico di Milano.

Do you want to learn more?
Visit our website and join our Telegram Group! !

https://www.facebook.com/PolimiDataScientists
http://www.polimidatascientists.it/
https://t.me/joinchat/CY3uJEb1ovKoc9G45r_cQA


MIDA 2 
1. Black Box non-parametric systems identification of 
I/O systems using state space models 
 
Representations 
1. State Space Representation  

𝐹𝐹𝑛𝑛x𝑛𝑛(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
𝐻𝐻1x𝑛𝑛(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

𝐺𝐺𝑛𝑛x1(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
𝐷𝐷1x1(𝐼𝐼/𝑂𝑂 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

 
D = 0 for strictly proper systems, where the output only depends on the state.  
Output : Input 
 State representation is not unique 

𝐹𝐹′ = 𝑇𝑇𝑇𝑇𝑇𝑇−1 
𝐻𝐻′ = 𝐻𝐻𝑇𝑇−1 

𝐺𝐺′ = 𝑇𝑇𝑇𝑇 
𝐷𝐷′ = 𝐷𝐷 

2. Transfer Function representation (I/O representation) 

𝑦𝑦(𝑡𝑡) = 𝑾𝑾(𝒛𝒛) 𝑢𝑢(𝑡𝑡) =
𝑩𝑩(𝒛𝒛)
𝑨𝑨(𝒛𝒛) 𝒛𝒛−𝒌𝒌 𝑢𝑢(𝑡𝑡) =

𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + ⋯ + 𝑏𝑏𝑝𝑝𝑧𝑧−𝑝𝑝

𝑎𝑎0 + 𝑎𝑎1𝑧𝑧−1 + ⋯ + 𝑎𝑎𝑛𝑛𝑧𝑧−𝑛𝑛 𝑧𝑧−𝑘𝑘 

 
n = order of the system  
 
3. Impulse Response representation  

It can be proven that I/O relation from u(t) and y(t) can be written as  

𝑦𝑦(𝑡𝑡) = � 𝜔𝜔(𝑘𝑘)𝑢𝑢(𝑡𝑡 − 𝑘𝑘)
+∞

𝑘𝑘=0

 

Where 𝜔𝜔(𝑘𝑘) is the I.R of the system and y(t) is the convolution of the I.R. with the input 
signal. 
 
SS -> TF 

𝑦𝑦(𝑡𝑡) = 𝑯𝑯(𝒁𝒁𝒁𝒁 − 𝑭𝑭)−𝟏𝟏𝑮𝑮 𝑢𝑢(𝑡𝑡) 
TF -> SS 
SS is not unique.  
Control realization technique. 

𝑊𝑊(𝑧𝑧) =
𝑏𝑏0𝑧𝑧𝑛𝑛−1 + ⋯ + 𝑏𝑏𝑛𝑛−1

𝑧𝑧𝑛𝑛 + 𝑎𝑎1𝑧𝑧𝑛𝑛−1 + ⋯ + 𝑎𝑎𝑛𝑛
 

Assumptions: 
• Monic DEN (a0 = 1) 
• Strictly proper system (b-1 = 0) 

 
Formulas:  



𝐹𝐹 = �

0 1 0 0
0 ⋱ ⋱ 0
0 0 0 1

−𝑎𝑎𝑛𝑛 −𝑎𝑎𝑛𝑛−1 ⋯ −𝑎𝑎1

�   𝐺𝐺 = �

0
⋮
0
1

�   𝐻𝐻 = [𝑏𝑏𝑛𝑛−1 𝑏𝑏𝑛𝑛−𝑧𝑧 ⋯ 𝑏𝑏0]
𝐷𝐷 = 0                                        

  

 
TF -> IR 
Infinite long division of NUM and DEN of W(z). 
 
IR -> TF 
Trough the Z-transform  

𝑊𝑊(𝑧𝑧) = � 𝜔𝜔(𝑡𝑡) 𝑧𝑧−𝑡𝑡
+∞

𝑡𝑡=0

 

We would need infinite points of I.R. and a noise free I.R. 
 
SS -> IR 

𝜔𝜔(0) = 0, 𝑤𝑤(𝑛𝑛) = 𝐻𝐻𝐹𝐹𝑛𝑛−1� �(� − �) 
 
4SID (Subspace based State Space Systems Identification)  
 
4SID starts with the measurement of the system output in the “impulse experiment”. 
 

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑂𝑂) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ��
𝐻𝐻
⋮

𝐻𝐻𝐹𝐹𝑛𝑛−1
�� = 𝑛𝑛 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅([𝐺𝐺 ⋯ 𝐹𝐹𝑛𝑛−1𝐺𝐺]) = 𝑛𝑛 
 
 

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌: 𝐻𝐻𝑛𝑛 = �
𝜔𝜔(1) ⋯ 𝜔𝜔(𝑛𝑛)

⋮ ⋱ ⋮
𝜔𝜔(𝑛𝑛) ⋯ 𝜔𝜔(2𝑛𝑛 − 1)

� = �
𝐻𝐻𝐻𝐻 ⋯ 𝐻𝐻𝐹𝐹𝑛𝑛−1𝐺𝐺

⋮ ⋱ ⋮
𝐻𝐻𝐹𝐹𝑛𝑛−1𝐺𝐺 ⋯ 𝐻𝐻𝐹𝐹2𝑛𝑛−1𝐺𝐺

� = 𝑂𝑂 ∙ 𝑅𝑅 

 
1. Noise Free 

 
Step 1: Build the biggest full-Rank Hankel Matrix, Hn 

Step 2: Take Hn+1 and factorize it into two rectangular matrices (n+1 x n)(n x n+1) 
 Which are On+1 and Rn+1. 

𝐻𝐻𝑛𝑛+1 =

⎣
⎢
⎢
⎡

ℎ1,1 ⋯ ℎ1,𝑛𝑛+1
⋮ ⋱ ⋮

ℎ𝑛𝑛,1 ⋯ ℎ𝑛𝑛,𝑛𝑛+1
ℎ𝑛𝑛+1,1 ⋯ ℎ𝑛𝑛+1,𝑛𝑛+1⎦

⎥
⎥
⎤

= �

1 0 0
0 ⋱ 0
0 0 1
? ? ?

� �
ℎ1,1 ⋯ ℎ1,𝑛𝑛+1

⋮ ⋱ ⋮
ℎ𝑛𝑛,1 ⋯ ℎ𝑛𝑛,𝑛𝑛+1

� = 𝑂𝑂𝑛𝑛+1
(𝑛𝑛+1)x 𝑛𝑛

∙ 𝑅𝑅𝑛𝑛+1
𝑛𝑛 x(𝑛𝑛+1)

 

 
Step 3: 𝑂𝑂1 = 𝑂𝑂𝑛𝑛+1(1: 𝑛𝑛, : ), 𝑂𝑂2 = 𝑂𝑂𝑛𝑛+1(2: 𝑛𝑛 + 1, : ) 

𝐹𝐹� = 𝑂𝑂1
−1 ∙ 𝑂𝑂2 

𝐻𝐻� = 𝑂𝑂𝑛𝑛+1(1, : ) 
𝐺𝐺� = 𝑅𝑅𝑛𝑛+1(: ,1) 

𝐷𝐷� = 𝜔𝜔(0) 



This method remained unused until a new tool was developed Singular Value 
Decomposition: a technique for Data compression and Optimal separation of signal from 
noise. 

2. With Noise
We get the samples, n = 100 ÷ 1000 = q + d – 1 

𝐻𝐻�𝑞𝑞𝑞𝑞 = �
𝜔𝜔�(1) ⋯ 𝜔𝜔�(𝑑𝑑)

⋮ ⋱ ⋮
𝜔𝜔�(𝑞𝑞) ⋯ 𝜔𝜔�(𝑞𝑞 + 𝑑𝑑 − 1)

� 

• If q ≈ d : the method has better accuracy
• If q < d : the method is computationally less intensive

Rule of thumb: 0.6d < q < d 

Step 2: SVD of 𝐻𝐻�𝑞𝑞𝑞𝑞
𝑞𝑞x𝑑𝑑

= 𝑈𝑈�
𝑞𝑞x𝑞𝑞

 𝑆̃𝑆
𝑞𝑞x𝑑𝑑

 𝑉𝑉� 𝑇𝑇
𝑑𝑑x𝑑𝑑

𝑈𝑈�, 𝑉𝑉� : are unitary matrices (p15) 

𝑆̃𝑆 = �
𝜎𝜎1 0 0 0
0 ⋱ 0 0
0 0 𝜎𝜎𝑞𝑞 0

�  σ1, …, σn are the singular value of 𝐻𝐻�𝑞𝑞𝑞𝑞 

SVD is similar to a diagonalization of a rectangular matrix. 

𝑆𝑆𝑆𝑆(𝑀𝑀) = �𝐸𝐸𝐸𝐸𝐸𝐸(𝑀𝑀𝑀𝑀𝑇𝑇) = �𝐸𝐸𝐸𝐸𝐸𝐸(𝑀𝑀𝑇𝑇𝑀𝑀) 
Step 3: Plot the singular values and “cut off” the 3 matrices.  

In the ideal case there is a perfect separation between signal and noise. 

With some empirical test we can select a good compromise between complexity, 
precision and over fitting, to choose an appropriate n. 

Rank reduction: 
𝐻𝐻�𝑞𝑞𝑞𝑞 = 𝑈𝑈�𝑆̃𝑆𝑉𝑉� 𝑇𝑇 = 𝑈𝑈�𝑆̂𝑆𝑉𝑉� 𝑇𝑇 + 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟 



𝑈𝑈� = 𝑈𝑈�(: ,1: 𝑛𝑛) 
𝑆̂𝑆 = 𝑆̃𝑆(1: 𝑛𝑛, 1: 𝑛𝑛) 
𝑉𝑉� = 𝑉𝑉� (1: 𝑛𝑛, : ) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝐻𝐻�𝑞𝑞𝑞𝑞� = 𝑞𝑞 
𝐻𝐻�𝑞𝑞𝑞𝑞 = 𝑈𝑈�𝑆̂𝑆𝑉𝑉� 𝑇𝑇 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝐻𝐻�𝑞𝑞𝑞𝑞� = 𝑛𝑛 ≪ 𝑞𝑞 

Step 4: Estimation of �𝐹𝐹�, 𝐺𝐺�, 𝐻𝐻�� using 𝐻𝐻�𝑞𝑞𝑞𝑞 

𝐻𝐻�𝑞𝑞𝑞𝑞 = 𝑈𝑈�𝑆̂𝑆𝑉𝑉� 𝑇𝑇 = 𝑈𝑈�𝑆̂𝑆½𝑆̂𝑆½𝑉𝑉� 𝑇𝑇

𝑆̂𝑆½ =

⎣
⎢
⎢
⎡�𝜎𝜎1 … … 0

0 ⋱ 0 ⋮
⋮ 0 �𝜎𝜎𝑛𝑛 ⋮
0 … … 0⎦

⎥
⎥
⎤

𝑂𝑂� = 𝑈𝑈� 𝑆̂𝑆½

𝑅𝑅� = 𝑆̂𝑆½ 𝑉𝑉� 𝑇𝑇 
𝐻𝐻�𝑞𝑞𝑞𝑞 = 𝑂𝑂� 𝑅𝑅�

𝐻𝐻� = 𝑂𝑂�(1, : ) 
𝐺𝐺� = 𝑅𝑅�(: ,1) 

𝑂𝑂�1 = 𝑂𝑂�(1: 𝑞𝑞 − 1, : ) 
𝑂𝑂�2 = 𝑂𝑂�(2: 𝑞𝑞, : ) 

𝑂𝑂�1 𝐹𝐹� =  𝑂𝑂�2 → 𝐹𝐹� = 𝑂𝑂�1
−1 𝑂𝑂�2

→ 𝐹𝐹� = �𝑂𝑂�1
𝑇𝑇𝑂𝑂�1�−1𝑂𝑂�1

𝑇𝑇𝑂𝑂�2

Conclusion: we have estimated a model �𝐹𝐹�, 𝐺𝐺�, 𝐻𝐻�� in a non-parametric, constructive 
way. 

Remark-1/5: something similar can be done for generic (non-impulsive) input 

Remark-4/5: 4SID is a constructive method that can be implemented in a fully 
automatic way except for 2 steps that need supervision 

• q and d selection (not critical)
• choice of n (can be automatic using cross validation method)



2. Parametric Black Box System Identification of I/O
Systems (using a frequency domain approach)
Generic parametric identification method 

1. Collect Data, experiment design and data pre-processing
1. Select a priori a class/family of parametric models
2. Select a priori a performance index
3. Optimization step: minimize J(θ) w.r.t. θ

General Idea: 
• Make a set of single sinusoid excitation, single-tune experiments.
• From each experiment → estimate a single point of the frequency response
• Fit the estimated and modeled freq. response to obtain the optimal model

1. Experiment Design Step

In the Experiment Design step we first have to select a set of excitation frequencies 
{𝜔𝜔1, 𝜔𝜔2, … , 𝜔𝜔𝐻𝐻}, usually evenly spaced and where 𝜔𝜔𝐻𝐻 must be select according to the 
bandwidth of the control system. 𝐴𝐴1 sin(𝜔𝜔1𝑡𝑡) , … , 𝐴𝐴𝐻𝐻 sin(𝜔𝜔𝐻𝐻𝑡𝑡) 

Remark: amplitudes (A1, …, AN) can be constant or more frequently decrease as the 
frequency increases to comply with the power constraints on the input actuator.   

If the system is LTI (linear time invariant) the freq. response theorem says that the 
response to a sinusoid is a sinusoid of the same frequency. However, in real application 
this is not the case because of:  

• Noise on output measurement
• Noise on the system (not directly on output
• (small) non-linear effects (neglectable)

In pre-processing of I/O data we want to extract from yi(t) a perfect sinusoid of the 
right frequency ωi. 

The model of the output signal is 
𝑦𝑦�𝑖𝑖(𝑡𝑡) = 𝑩𝑩𝒊𝒊 sin(𝜔𝜔𝑖𝑖𝑡𝑡 + 𝝋𝝋𝒊𝒊) 

𝑦𝑦�𝑖𝑖(𝑡𝑡) = 𝒂𝒂𝒊𝒊 sin(𝜔𝜔𝑖𝑖𝑡𝑡) + 𝒃𝒃𝒊𝒊 cos(𝜔𝜔𝑖𝑖𝑡𝑡) 
Parametric identification: 

�𝑎𝑎�𝑖𝑖 , 𝑏𝑏�𝑖𝑖� = argmin
{𝑎𝑎𝑖𝑖,𝑏𝑏𝑖𝑖}

{𝐽𝐽𝑁𝑁(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖)} 

𝐽𝐽𝑁𝑁(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖) =
1
𝑁𝑁

�(
𝑁𝑁

𝑡𝑡=1

𝑦𝑦_𝑖𝑖(𝑡𝑡)���
Measured

noisy
output

−𝑎𝑎𝑖𝑖sin(𝜔𝜔1𝑡𝑡) − 𝑏𝑏𝑖𝑖cos(𝜔𝜔𝑖𝑖𝑡𝑡)�����������������
Modeled output

�����������������������
Modeling error

 )2

�����������������������������
Sample variance of the modeling error

 

We obtain H solution: 𝑎𝑎�𝑖𝑖 , 𝑏𝑏�𝑖𝑖 , and convert them back to the polar form 𝐵𝐵�𝑖𝑖 , 𝜑𝜑�𝑖𝑖 



We have obtained H complex numbers which are estimated H points of the frequency 
response of the transfer function W(z) 

At the end of step 1 we have a frequency domain data set (H values) representing H 
estimated points of the freq. response of the system. 

2. Selection of parametric model class (T.F.)

𝑚𝑚(𝜃𝜃): 𝑊𝑊(𝑧𝑧; 𝜃𝜃) =
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + ⋯ + 𝑏𝑏𝑝𝑝𝑧𝑧𝑝𝑝

1 + 𝑎𝑎1𝑧𝑧−1 + ⋯ + 𝑎𝑎𝑛𝑛𝑧𝑧−𝑛𝑛 𝑧𝑧−1   𝜃𝜃 = �
𝑎𝑎1
⋮

𝑏𝑏𝑝𝑝
� 

Remark: as usual we have the problem of order selection (n, p) → use cross validation 
approach or visual inspection of the fitting of Bode plots. 

We need a new performance index, freq. domain not time domain 

𝐽𝐽𝐻𝐻(𝜃𝜃)
ℝ𝑛𝑛+𝑝𝑝(𝜃𝜃)→ℝ+(𝐽𝐽)

 =
1
𝐻𝐻

�(
𝐻𝐻

𝑡𝑡=1

𝑊𝑊(𝑒𝑒𝑗𝑗𝜔𝜔𝑖𝑖 , 𝜃𝜃)�������
Modeled 
freq.resp.

−
𝐵𝐵�𝑖𝑖

𝐴𝐴𝑖𝑖
𝑒𝑒𝑗𝑗𝜑𝜑�𝑖𝑖

�������
Measured
freq.resp

 )2

�������������������
Estimated error variance of freq.  resp.  fitting

Optimization 
𝜃𝜃� = argmin

𝜃𝜃
{𝐽𝐽𝐻𝐻(𝜃𝜃)} 

Usually JH is a non-quadratic non-convex function → iterative methods are needed. 



Remarks 
 
Remark on Step1: Frequency bandwidth selection? Theoretically the best solution is H 
points distributed uniformly from 0 to Ω𝑁𝑁 (Nyquist freq =  Ω𝑠𝑠/2).  
 
In practice, it is better to concentrate the experiment effort in a smaller more focused 
bandwidth. Rule of thumb: 3 x ωc (the “cut off” frequency of the control system).  
 
Remark2: In some cases, between ω1 and ωH, we want to be more accurate in system 
identification on some frequencies ranges (typically the cut-off or the resonance freq.). 
In this case we can use different weights for different frequencies. 

𝐽𝐽𝐻𝐻(𝜃𝜃) =
1
𝐻𝐻

� 𝛾𝛾𝑖𝑖(𝑊𝑊(𝑒𝑒𝑗𝑗𝜔𝜔𝑖𝑖 , 𝜃𝜃
𝐻𝐻

𝑡𝑡=1

−
𝐵𝐵�𝑖𝑖

𝐴𝐴𝑖𝑖
𝑒𝑒𝑗𝑗𝜑𝜑�𝑖𝑖)2 

We could alternatively have denser ω spacing in the frequency region of interest. 
 
Remark3: Sometimes the set of H independent/separated single-sinusoid experiments 
can be replaced by a single experiment, a long single sine sweep experiment: a slowly 
varying sinusoid with increasing frequency and decreasing amplitude from ωi → ωH. We 
can cut a-posteriori the signal into H piecies back to the standart proedure or directly 
compute an estimation of 𝑊𝑊� �𝑒𝑒𝑗𝑗𝑗𝑗� as a ratio of the output input spectra:  

𝑊𝑊�𝑒𝑒𝑗𝑗𝑗𝑗� ≈
Γ�𝑦𝑦(𝑒𝑒𝑗𝑗𝑗𝑗)
Γ�𝑢𝑢(𝑒𝑒𝑗𝑗𝑗𝑗)

 

We can fit the esitmated 𝑊𝑊� �𝑒𝑒𝑗𝑗𝑗𝑗� with the model freq. resp 𝑊𝑊�𝑒𝑒𝑗𝑗𝑗𝑗; 𝜃𝜃� in the 
performance index. This experiment is quicker but it usually has a lower signal-to-
noise ratio.  
 
Pros and Cons of freq. domain parametric methods vs time domain (ARMAX). 
 
+ robust and reliable (due to the fact that we put a lot of energy in each sinusoid) 
+ intuitive 
+ consistent with control design methods  
– more demanding 
– no noise model is estimated   

  



3. Kalman Filter (sw-sensing in feedback) 
Kalman Filter is not a system identification technique; thus, we don’t need recorder 
data.  
 
With KF we can address the following problems 

1. k-step ahead predictor of output 𝑦𝑦�(𝑡𝑡 + 𝑘𝑘|𝑡𝑡)  
this problem was solved in MIDA1 with ARMAX 

2. k-step ahead predictor of state 𝑥𝑥�(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) 
not solvable with ARMAX models 

3. find the filter of state 𝑥𝑥�(𝑡𝑡|𝑡𝑡)  
 𝑥𝑥(𝑡𝑡) given 𝑦𝑦(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑦𝑦(𝑡𝑡 − 1), … 

4. Gray box system identification  
(chapter 5…) 

 
SW-sensing 
 
Let us consider a system with m inputs n states p outputs. The outputs could be seen as 
states which we can measure through sensors. The states are variable which are either 
impossible to measure or cost-prohibitive to measure. We want to develop a system 
which has inputs and output as input and states as output.  
 

1. Is sw-sending feasible for a certain state? We must test the observability of 
the states. 

2. Quality of estimation error.  
 
Basic system 

𝑆𝑆: �𝑥𝑥(𝑡𝑡 + 1) = 𝐹𝐹𝐹𝐹(𝑡𝑡) + 𝐺𝐺𝐺𝐺(𝑡𝑡) + 𝑣𝑣1(𝑡𝑡) ← 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑦𝑦(𝑡𝑡)         = 𝐻𝐻𝐻𝐻(𝑡𝑡)              + 𝑣𝑣2(𝑡𝑡) ← 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 
|𝑥𝑥| = |𝑣𝑣1| = 𝑛𝑛 

|𝑢𝑢| = 𝑚𝑚 
|𝑦𝑦| = |𝑣𝑣2| = 𝑝𝑝 

 
Model/state noise: 

𝑣⃗𝑣1(𝑡𝑡) ~ 𝑊𝑊𝑊𝑊(0, 𝑉𝑉1) 
1. 𝐸𝐸[𝑣𝑣1(𝑡𝑡)] = 0�⃗  
2. 𝐸𝐸[𝑣𝑣1(𝑡𝑡) ∙ 𝑣𝑣1(𝑡𝑡)𝑇𝑇] = 𝑉𝑉1 ≥ 0 
3. 𝐸𝐸[𝑣𝑣1(𝑡𝑡) ∙ 𝑣𝑣1(𝑡𝑡 − 𝜏𝜏)] = 0 ∀𝑡𝑡, 𝜏𝜏 ≠ 0 

 

Output/measurement noise:  
𝑣⃗𝑣2(𝑡𝑡) ~ 𝑊𝑊𝑊𝑊(0, 𝑉𝑉2) 

1. 𝐸𝐸[𝑣𝑣2(𝑡𝑡)] = 0�⃗  
2. 𝐸𝐸[𝑣𝑣2(𝑡𝑡) ∙ 𝑣𝑣2(𝑡𝑡)𝑇𝑇] = 𝑉𝑉2 > 0 

(additional assumption) 
3. 𝐸𝐸[𝑣𝑣2(𝑡𝑡) ∙ 𝑣𝑣2(𝑡𝑡 − 𝜏𝜏)] = 0 ∀𝑡𝑡, 𝜏𝜏 ≠ 0 

 
𝐸𝐸[𝑣𝑣2(𝑡𝑡) ∙ 𝑣𝑣2(𝑡𝑡 − 𝜏𝜏)] = 𝑉𝑉12

𝑛𝑛x𝑝𝑝
= � 0 if 𝜏𝜏 ≠ 0

can be ≠ 0 if 𝜏𝜏 = 0   (cross variance matrix) 

 
Since the system S is dynamic, we need to define the initial conditions: 
 

𝐸𝐸[𝑥𝑥(1)] = 𝑥𝑥0 
𝐸𝐸[(𝑥𝑥(1) − 𝑥𝑥0)(𝑥𝑥(1) − 𝑥𝑥0)𝑇𝑇] = 𝑃𝑃0

𝑛𝑛x𝑛𝑛
≥ 0 

𝑥𝑥(1) ⊥ 𝑣𝑣1(𝑡𝑡) 
𝑥𝑥(1) ⊥ 𝑣𝑣2(𝑡𝑡) 



 
KF for the basic solution of the basic system 
 
Now we present the basic solution → 1-step ahead prediction for the basic system 
(Gu(t) = 0).  
 
𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) = 𝐹𝐹𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1) + 𝑘𝑘(𝑡𝑡) ∙ 𝑒𝑒(𝑡𝑡)               state equation 
𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) = 𝐻𝐻𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1)                                       output equation 
 
𝑒𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1)                                        output prediction error 
𝑘𝑘(𝑡𝑡) = (𝐹𝐹𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇 + 𝑉𝑉12)(𝐻𝐻𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇 + 𝑉𝑉2)−1     eq. of the gain of the KF 
 
𝑃𝑃(𝑡𝑡 + 1) = (𝐹𝐹 𝑃𝑃(𝑡𝑡)𝐹𝐹𝑇𝑇 + 𝑉𝑉1) − (𝐹𝐹 𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇 + 𝑉𝑉12)(𝐻𝐻 𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇 + 𝑉𝑉2)−1(𝐹𝐹 𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇 + 𝑉𝑉12)𝑇𝑇 
Difference Riccati equation D.R.E. 
 
These equations must be completede with 2 initial conditions (since 2 eq. are dynamic): 
 

State equation → 𝑥𝑥�(1|0) = 𝐸𝐸[𝑥𝑥(1)] = 𝑥𝑥0 
D.R.E. → 𝑃𝑃(1) = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥(1)] = 𝑃𝑃0 

 
D.R.E. have a blockset structure 
 
State → 𝐹𝐹 𝑃𝑃(𝑡𝑡) 𝐹𝐹𝑇𝑇 + 𝑉𝑉1 
Ouput → 𝐻𝐻 𝑃𝑃(𝑡𝑡) 𝐻𝐻𝑇𝑇 + 𝑉𝑉2 
Mix → 𝐹𝐹 𝑃𝑃(𝑡𝑡) 𝐻𝐻𝑇𝑇 + 𝑉𝑉12 

GAIN: 𝑘𝑘(𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡−1 
DRE:𝑃𝑃(𝑡𝑡 + 1) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑀𝑀𝑀𝑀𝑀𝑀 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡−1 ∙ 𝑀𝑀𝑀𝑀𝑥𝑥𝑇𝑇

 
Remark: Riccati equation 
Riccati eq. is a special type of non linear matrix difference equation. Notice that D.R.E. 
is an autonomous, non linear, discrete, multivariable system described by a 
nonlinear differene matrix eq.. 
 
Remark: Existance of D.R.E. 
In order to guarantee the existance of D.R.E. ∀𝑡𝑡 the only critical part is the inversion of 
the output block.  

(𝐻𝐻 𝑃𝑃(𝑡𝑡) 𝐻𝐻𝑇𝑇 + 𝑉𝑉2)−1  
 
H ≥ 0 but not guaranteed to be in vertible  
V2 > 0 we previously made this assumption hence the sum is > 0. 
 
Remark: Meaningn of P(t) 
It can be proven that P(t) has a importan meaning.  
 

𝑃𝑃(𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1)] 
 
P(t) is a sqaure covariance matrix ≥ 0, covarinace of the 1-step ahead prediction error of 
the state.  
 



 
 

• Make a simulated replica of the system (without noises since v1, v2 are not 
measureable) 

• Compare the true (measured) output with the estimated/simulated output 
𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) 

• Make correction on KF main equation proportional (with k(t)) to the output 
error to keep KF as close as possible to S.  

• Extract the state estimation 𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1) 
 
KF is a feedback system where the feedback isn’t used for control (as usual) but for 
estimation.  
 
The structure of state observer existed before KFs. KF found the optimabl gain k(t). 
 
k(t) is not a simple scalar gain (it cannot be tuned empirically) but It is a nxp maxtrix 
which cane be very large, thus difficult to be tuned. 
 
Selection of gain matrix k(t) is very critical: 

• If k(t) is too small: estimation is not optimal because we are under-exploiting 
the information in y(t). 

• If k(t) is too big: we riskt to be over-exploiting y(t) → noise aplification, risk of 
instability 

 
Design of KG does not require a training dataset but a complete model of the system, 
usually obtained with whtie-box physical modeling of S.  
 
Whereas, V2 is easily built from sensors specification, V1 (model noise) is much more 
difficult to design, it is the most critical part of the KF. 
  



Extensions of Basic Problem of Basic System 
 
Extension 1: Exogenous input 

 
Notice that k(t) remains the same becasuse P(t) is the covariance of the estiamtion 
(prediction) error of x(t) and remains the same because G u(t) does not introduce any 
additional noise or uncertainties to the system, because G u(t) is a totally known 
deterministic signal.] 
 
Extension 2: Multi-step prediction 
Assume that 𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) is known (from basic solution) we can simply obtain a multi-
step prediction as: 

𝑥𝑥�(𝑡𝑡 + 2|𝑡𝑡) = 𝐹𝐹𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) 
𝑥𝑥�(𝑡𝑡 + 3|𝑡𝑡) = 𝐹𝐹2𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) 

⋮ 
𝑥𝑥�(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) = 𝐹𝐹𝑘𝑘−1𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) 

𝑦𝑦�(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) = 𝐻𝐻𝑥𝑥�(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) 
 
Which is valid also for exgenous systems, u(t) is known up to t. 
 
Extension 3: Filter  

𝑥𝑥�(𝑡𝑡|𝑡𝑡) = 𝐹𝐹−1𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) 
 
This formula is valid only if F is invertible. If it isn’t the filter can be obtained with a 
specific filter formulation of K.F. Filter Form 
 
𝑥𝑥�(𝑡𝑡|𝑡𝑡) = 𝐹𝐹𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1) + 𝑘𝑘0(𝑡𝑡) ∙ 𝑒𝑒(𝑡𝑡)                     state equation 
𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) = 𝐻𝐻𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1)                                       output equation 
 
𝑒𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1)                                        output prediction error 
𝑘𝑘0(𝑡𝑡) = (𝐹𝐹𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇 + 𝑉𝑉12 )(𝐻𝐻𝑃𝑃(𝑡𝑡)𝐻𝐻𝑇𝑇 + 𝑉𝑉2)−1  eq. of the gain of the KF 
D.R.E. unchanged 
 



These equations are valid under the restrictive assumption of V12 = 0 
 
Extension 4: Time varying system  
 

𝑆𝑆: �𝑥𝑥(𝑡𝑡 + 1) = 𝐹𝐹(𝑡𝑡) 𝑥𝑥(𝑡𝑡) + 𝐺𝐺(𝑡𝑡) 𝑢𝑢(𝑡𝑡) + 𝑣𝑣1(𝑡𝑡)
𝑦𝑦(𝑡𝑡) = 𝐻𝐻(𝑡𝑡) 𝑥𝑥(𝑡𝑡)                + 𝑣𝑣2(𝑡𝑡)  

 
K.F. eq remain identical we just replace matrices with time varying matrices.  
 
Asymptotic solution of KF 
 
KF is LTV (linear time varying) since the gain is time varying. This causes 2 problems: 

1. Checking the stability of KF is very difficult. 
LTI stability check: 𝑥𝑥(𝑡𝑡 + 1) = 𝐹𝐹𝐹𝐹(𝑡𝑡) + 𝐺𝐺𝐺𝐺(𝑡𝑡) → 𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹) inside uni-circle. 
In LTV even if 𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹) ∀𝑡𝑡 inside uni-circle the system is not guaranteed to be 
asymptotically stable. 

2. Computational problem 
k(t) must be computed at each sampling time  

Because of these problems the asymptotic version of KF is preferred.  
 
𝑃𝑃(𝑡𝑡)  

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�⎯⎯⎯⎯⎯⎯�  𝑃𝑃�  ⟹ 𝑘𝑘(𝑡𝑡)

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
�⎯⎯� 𝐾𝐾�  

 
𝑃𝑃�: steady state value of P(t) 
𝐾𝐾�: stead state asymptotic value of k(t) 

First let’s analyze the asymptotic stability of KF, when 𝐾𝐾� is used (KF is LTI). Let’s 
assume that 𝐾𝐾� exists. 
Analysis of dynamic state of state equation of K.F.  
 

𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) = 𝐹𝐹𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1) + 𝐺𝐺𝐺𝐺(𝑡𝑡) + 𝐾𝐾�𝑒𝑒(𝑡𝑡) 
𝑒𝑒(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) = 𝑦𝑦(𝑡𝑡) − 𝐻𝐻𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1) 

𝑥𝑥�(𝑡𝑡 + 1|𝑡𝑡) = (𝐹𝐹 − 𝐾𝐾�𝐻𝐻) 𝑥𝑥�(𝑡𝑡|𝑡𝑡 − 1) + 𝐺𝐺𝐺𝐺(𝑡𝑡) + 𝐾𝐾�𝑦𝑦(𝑡𝑡) 
                                               New state matrix of KF 

 
If 𝐾𝐾� does exist the KF is asymptotically stable iff all the 𝑬𝑬𝑬𝑬𝑬𝑬(𝑭𝑭 − 𝑲𝑲�𝑯𝑯) are strictly 
inside the uni-circle.  
KF can be asymptotically stable even if the system is unstable. 
 
Since 𝐾𝐾� exists if 𝑃𝑃� exists.  
Let’s finde the quilibrium of dynamical autonomous system. 
 
 



Continuous time 
𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) 

equilibrium → 𝑥̇𝑥 = 0 
→ 𝑓𝑓(𝑥̅𝑥) = 0 

 

Discrete time 
𝑥𝑥(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥(𝑡𝑡)) 

equilibrium → 𝑥𝑥(𝑡𝑡 + 1) = 𝑥𝑥(𝑡𝑡) 
→ 𝑓𝑓(𝑥̅𝑥) = 𝑥̅𝑥

D.R.E. is an autnomous discrete time system. 
 

𝑃𝑃� = (𝐹𝐹 𝑃𝑃 � 𝐹𝐹𝑇𝑇 + 𝑉𝑉1) − (𝐹𝐹 𝑃𝑃� 𝐻𝐻𝑇𝑇 + 𝑉𝑉12)(𝐻𝐻 𝑃𝑃� 𝐻𝐻𝑇𝑇 + 𝑉𝑉2)−1(𝐹𝐹 𝑃𝑃� 𝐻𝐻𝑇𝑇 + 𝑉𝑉12)𝑇𝑇 
 
This is a non-linear algebraic eq. called Algebraic Riccati Eq (A.R.E.). 
 
3 Questions:  

1. Existance: does A.R.E. have a semi definitive positive solution? 
2. Convergence: if (1), does D.R.E. converge to 𝑃𝑃�? 

in principle 𝑃𝑃� can be an equilibrium point for D.R.E. but not an attractor 
3. Stability: if (1) and (2): is the corresponding 𝐾𝐾� such that K.F is asymptotically 

stable? 
𝐸𝐸𝐸𝐸𝐸𝐸(𝐹𝐹 − 𝐾𝐾�𝐻𝐻) are strictly inside the uni-circle 

 
To answer to these questions we need 2 fundamental Theorems. 
 
Asymptotic Th #1 
#1-Th:  
Assumptions:  

• V12 =0 
• S  is asym. stable → all EIG(F) strictly inside the uni-circle. 

Then:  
• A.R.E. has only one solution F ≥ 0 
• D.R.E. converges to 𝑃𝑃� ∀𝑃𝑃0 ≥ 0 
• The corresponding 𝐾𝐾� is such that KF is asym. Stable 

 
Asymptotic Th #2 
For the 2nd Th we need controllability from noise.  
 

𝑥𝑥(𝑡𝑡 + 1) = 𝐹𝐹𝐹𝐹(𝑡𝑡) + 𝐺𝐺𝐺𝐺(𝑡𝑡) + 𝑣𝑣1(𝑡𝑡)    𝑣𝑣1~𝑊𝑊𝑊𝑊(0, 𝑉𝑉1) 
 
It is always possible to factorize V1 = Γ⋅ΓT. 
 

𝑥𝑥(𝑡𝑡 + 1) = 𝐹𝐹𝐹𝐹(𝑡𝑡) + Γω(𝑡𝑡)    𝜔𝜔(𝑡𝑡)~𝑊𝑊𝑊𝑊(0, 𝐼𝐼) 
 
Example 

𝑥𝑥(𝑡𝑡 + 1) =
1
2

𝑥𝑥(𝑡𝑡) + 𝑣𝑣1(𝑡𝑡)   𝑣𝑣~𝑊𝑊𝑊𝑊(0,4) 

𝑥𝑥(𝑡𝑡 + 1) =
1
2

𝑥𝑥(𝑡𝑡) + 2𝜔𝜔(𝑡𝑡)   𝜔𝜔~𝑊𝑊𝑊𝑊(0,1) 
 
We can say that the state x is controllable from input noise v1(t) iff: 
 



𝑅𝑅 = [Γ 𝐹𝐹 Γ ⋯ 𝐹𝐹𝑛𝑛−1Γ] is of full Rank (n) 
 
#2-Th 
Assumption:  

• V12 = 0 
• (F, H) is observable 
• (F, Γ) is controllable  

Then:  
• A.R.E. has 1 definitive positive solution 𝑃𝑃� > 0 
• D.R.E. converges to 𝑃𝑃� ∀𝑃𝑃0 ≥ 0 
• The corresponding 𝐾𝐾� is such that KF is asym. stable. 

 
These theorems are useful to avoid the convergence analysis of D.R.E.. 
Example page 47 
 
Extended System 
 
KF formula assumes v1 and v2 to be white noises, which is often a too demanding 
requirement.  
 

𝑆𝑆: �𝑥𝑥(𝑡𝑡 + 1) = 𝑎𝑎 𝑥𝑥(𝑡𝑡) + 𝜂𝜂(𝑡𝑡)
𝑦𝑦(𝑡𝑡) = 𝑏𝑏 𝑥𝑥(𝑡𝑡) + 𝑣𝑣2(𝑡𝑡)  𝜂𝜂(𝑡𝑡) =

1
1 − 𝑐𝑐 𝑧𝑧−1 𝑒𝑒(𝑡𝑡) 

𝑣𝑣2(𝑡𝑡)~𝑊𝑊𝑊𝑊(0,1) 

𝑒𝑒(𝑡𝑡)~𝑊𝑊𝑊𝑊(0,1) 
𝑒𝑒 ⊥ 𝑣𝑣2 

 
We cannot apply KF formula, we proceed as follows: 
 

𝜂𝜂(𝑡𝑡) = 𝑐𝑐 𝜂𝜂(𝑡𝑡 − 1) + 𝑒𝑒(𝑡𝑡) 
𝜂𝜂(𝑡𝑡 + 1) = 𝑐𝑐 𝜂𝜂(𝑡𝑡) + 𝑒𝑒(𝑡𝑡 + 1) 

𝜂𝜂(𝑡𝑡 + 1) = 𝑐𝑐 𝜂𝜂(𝑡𝑡) + 𝑣𝑣(𝑡𝑡) 

𝑣𝑣(𝑡𝑡) = 𝑒𝑒(𝑡𝑡 + 1) 
𝑣𝑣~𝑊𝑊𝑊𝑊(0,1) 

𝑣𝑣 ⊥ 𝑣𝑣2 
 
Extension of the state vector 

𝑥𝑥(𝑡𝑡) → 𝑥𝑥1(𝑡𝑡) 
𝜂𝜂(𝑡𝑡) → 𝑥𝑥2(𝑡𝑡) 𝑥𝑥 = �𝑥𝑥1(𝑡𝑡)

𝑥𝑥2(𝑡𝑡)�  

𝑆𝑆: �
𝑥𝑥1(𝑡𝑡 + 1) = 𝑎𝑎 𝑥𝑥1(𝑡𝑡) + 𝑥𝑥2(𝑡𝑡)
𝑥𝑥2(𝑡𝑡 + 1) = 𝑐𝑐 𝑥𝑥2(𝑡𝑡) + 𝑣𝑣(2)

𝑦𝑦(𝑡𝑡) = 𝑏𝑏 𝑥𝑥1(𝑡𝑡) + 𝑣𝑣2(𝑡𝑡)
 

Now we can apply KF formulas to the extended system 
 
Extension 5: Extension of KF to non-linear systems 
 

𝑆𝑆: �
𝑥𝑥(𝑡𝑡 + 1) = 𝑓𝑓�𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� + 𝑣𝑣1(𝑡𝑡)

𝑦𝑦(𝑡𝑡) = ℎ�𝑥𝑥(𝑡𝑡)� + 𝑣𝑣2(𝑡𝑡)
 

 
f(⋅), h(⋅) non-linear functions of x(t) and u(t) ∈ C(1) or higher. 
The block scheme is unchanged (see Extension 1 without G matrix). We have to solve 
the Gain Block. 
 



We have 2 solutions: 
1. gain is a non-linear function k(e(t)) 
2. gain is a linear time-varying (LTV) function: Extended KF 

 
EKF 
We can re-use FK formulas with small adjustments, the idea is to make a time varying 
linear local approximation of a non-linear time invariant system. So, the only thing we 
change to the KF formulas are F and H, which are now time varying matrices computed 
as follow:  
 

𝐹𝐹(𝑡𝑡) =
𝜕𝜕𝜕𝜕�𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡)�

𝜕𝜕𝜕𝜕(𝑡𝑡)
|𝑥𝑥(𝑡𝑡)=𝑥𝑥�(𝑡𝑡|𝑡𝑡−1)  𝐻𝐻(𝑡𝑡) =

𝜕𝜕ℎ�𝑥𝑥(𝑡𝑡)�
𝜕𝜕𝜕𝜕(𝑡𝑡)

|𝑥𝑥(𝑡𝑡)=𝑥𝑥�(𝑡𝑡|𝑡𝑡−1)  

 
EKF is the time varying solution of KF where F(t), H(t) are local linear matrices 
computed (at each sampling time) around the last available prediction 𝑥𝑥�(𝑥𝑥|𝑡𝑡 − 1).  
 
Remarks on EKF 

• it does not have a “steady state” asymptotic solution 
• it has the same problem of LTV KF 

- it is almost impossible to have a theorical guarantee of EKF stability 
extensive empirical tests are needed 

- computational load  
F(t), H(t), k(t) and P(t) must be computed at run-time. 

  



4. SW-sensing with Black Box Models 
virtual sensing, variable estimator 
 
In this chapter we will see black-box approaches with learning/training from data for 
SW-techniques.  
 
Let us start with the case of LTI systems. We will first consider a simplified case: SISO-1 
state.  
 

𝑆𝑆: �𝑥𝑥(𝑡𝑡 + 1) = 𝑎𝑎 𝑥𝑥(𝑡𝑡) + 𝑏𝑏 𝑢𝑢(𝑡𝑡) + 𝑣𝑣1(𝑡𝑡)
𝑦𝑦(𝑡𝑡) = 𝑐𝑐 𝑥𝑥(𝑡𝑡) + 𝑣𝑣2(𝑡𝑡)  𝑣𝑣1 ~ 𝑊𝑊𝑊𝑊 

𝑣𝑣2 ~ 𝑊𝑊𝑊𝑊 
 
We want to estimate 𝑥𝑥�(𝑡𝑡) from measured signals 𝑢𝑢(𝑡𝑡), 𝑦𝑦(𝑡𝑡)  

 
Let us find the relationship between 𝑢𝑢(𝑡𝑡) → 𝑥𝑥�(𝑡𝑡), 𝑦𝑦(𝑡𝑡) → 𝑥𝑥�(𝑡𝑡) 

𝑥𝑥�(𝑡𝑡) =
𝑏𝑏 ∙ 𝑧𝑧−1

1 − 𝑎𝑎 𝑧𝑧−1

1 + 𝐾𝐾 𝑐𝑐 𝑧𝑧−1

1 − 𝑎𝑎 𝑧𝑧−1

𝑢𝑢(𝑡𝑡) +
𝐾𝐾 ∙ 𝑧𝑧−1

1 − 𝑎𝑎 𝑧𝑧−1

1 + 𝐾𝐾 𝑐𝑐 𝑧𝑧−1

1 − 𝑎𝑎 𝑧𝑧−1

𝑦𝑦(𝑡𝑡) 

 

𝑥𝑥�(𝑡𝑡) =
𝑏𝑏

1 + (𝐾𝐾 𝑐𝑐 − 𝑎𝑎)𝑧𝑧−1 𝑢𝑢(𝑡𝑡 − 1) +
𝐾𝐾

1 + (𝐾𝐾 𝑐𝑐 − 𝑎𝑎)𝑧𝑧−1 𝑦𝑦(𝑡𝑡 − 1) 

 
KF is a sophisticated way to build these transfer functions from a white-box model. 
Alternatively, we can adopt a black-box approach to estimate these 2 transfer functions 
from data.  
 
In supervised training approach we need measurement of the state to be estimated, 
so we need a physical sensor on x(t) only for design/training of SW-sensor.  
 

{𝑢𝑢(1), … , 𝑢𝑢(𝑛𝑛)}, {𝑦𝑦(1), … , 𝑦𝑦(𝑛𝑛)}, {𝑥𝑥(1), … , 𝑥𝑥(𝑛𝑛)} 
 
We now have 2 options: 

1. Use 4SID for direct non parametric identification of u,y → x dynamics. 
2. Use a classic parametric system identification approach  



𝑥𝑥�(𝑡𝑡) = 𝑆𝑆𝑢𝑢𝑢𝑢(𝑧𝑧; 𝜃𝜃) 𝑢𝑢(𝑡𝑡 − 1) + 𝑆𝑆𝑦𝑦𝑦𝑦(𝑧𝑧; 𝜃𝜃) 𝑦𝑦(𝑡𝑡 − 1) 

𝐽𝐽𝑁𝑁(𝜃𝜃) =
1
𝑁𝑁

� �𝑥𝑥(𝑡𝑡) − �𝑆𝑆𝑢𝑢𝑢𝑢(𝑧𝑧; 𝜃𝜃) ∙ 𝑢𝑢(𝑡𝑡) + 𝑆𝑆𝑦𝑦𝑦𝑦(𝑧𝑧; 𝜃𝜃) ∙ 𝑦𝑦(𝑡𝑡)��
2

𝑁𝑁

𝑡𝑡=1

 

𝜃𝜃� = argmin
𝜃𝜃

{𝐽𝐽𝑁𝑁(θ)}  

 
 KF BB 

Need of W.B. physical 
model of S YES NO 

Need of training dataset (NO) YES 
Interpretability of the 

result YES NO 

Easy re-tuning of a similar 
system YES NO 

Accuracy of the estimator Good Very Good 
Can be used in case of un-

measurable states YES NO 

 
Non-linear system 
 
When the system is non-linear the problems becomes 
more complicated. EKF uses the trick of time-varying 
linear gain k(t), however, the obvious natural choice 
is the non-linear gain (static non-linear function). 

 
Architecture #1 
It uses a recurrent neural network RNN with 
dynamic neurons. It is the most general approach, 
but it is practically never used → major issues of 
stability and convergence training.  
 
Architecture #2  
Finite Input Response Architecture (FIR): Split the system into a static NL system and 
linear dynamics. 
 



Remark:  
In case of a MIMO with m 
inputs, p outputs, and n states. 
The estimator is the search of 
the optimal parameter vector 
θ for the function: 

𝑓𝑓( ∙ ; 𝜃𝜃): ℝ𝑚𝑚 x 𝑛𝑛𝑢𝑢+ 𝑝𝑝 x (𝑛𝑛𝑦𝑦+1)

→ ℝ𝑛𝑛 
Estimation (training) of this 
function f ( ⋅ ; θ) is much 
simpler than the estimation of 
a Recursive Neural Network.  
Moreover, stability is 
guaranteed (the system is 
Finite Input Response FIR).  

Architecture #3 
Infinite Input Response IIR: static non-linear function plus linear dynamic but this 
time I.I.R which means we have recursive input x(t). 

 
 
 
 
Advantage: nu, ny are smaller 
compared to Arch. #2 
 
Disadvantage: this Arch. is not 
guaranteed to be stable by 
construction. 
 
This part to the system is recursive, 
in production we feedback the 
delayed 𝑥𝑥�(𝑡𝑡) signal (problem of 
instability).  
 
 
 

 
 
 
 

Architecture #4 
Separation of system dynamics and a 
static non-linear system using 
regressor built from physical 
knowledge. 
 
The system, which can be dynamic and non-linear, builds the regressors r1(t), … rn(t), 
from physical signals u(t), y(t) using physical knowledge/understating of the system. 



 
Conclusions 
 
In case of black-box SW-sensing with nonlinear system the problem can be quite 
complex.  
Using “brute force” approach (1 Dynamic Neural Network) is usually doomed to failure.  
It is best to gain some insight of the system and build some “smart” regressor before 
black-box mapping. 

  



5. Gray Box System System Identification 
Gray Box System Identification using KF 
 
We have a model, typically built as a white-box model using first principles:  
 

𝑆𝑆: �𝑥𝑥(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡); 𝜃𝜃) + 𝑣𝑣1(𝑡𝑡)    model noise
𝑦𝑦(𝑡𝑡) = ℎ(𝑥𝑥(𝑡𝑡); 𝜃𝜃) + 𝑣𝑣2(𝑡𝑡)                     output noise 

 
f and h are linear or non-linear functions depending on some unknown parameter θ 
(which has a physical meaning such as the mass, friction coefficient, etc.)  our goal is to 
estimate θ. 
 
KF solves this problem by transforming the unknown parameters in extended states → 
KF makes the simultaneous estimation of: 
 𝑥𝑥�(𝑡𝑡|𝑡𝑡)    (classic KF problem)  
𝜃𝜃�(𝑡𝑡)        (parameter identification problem) 
 
State extension trick.  
 

�
𝑥𝑥(𝑡𝑡 + 1) = 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡); 𝜃𝜃) + 𝑣𝑣1(𝑡𝑡)

𝜃𝜃(𝑡𝑡 + 1) = 𝜃𝜃(𝑡𝑡) + 𝑣𝑣𝜃𝜃(𝑡𝑡)
𝑦𝑦(𝑡𝑡) = ℎ(𝑥𝑥(𝑡𝑡); 𝜃𝜃) + 𝑣𝑣2(𝑡𝑡)

 

 

𝑥𝑥𝐸𝐸 = �𝑥𝑥(𝑡𝑡)
𝜃𝜃(𝑡𝑡)� 

Unknown parameters are transformed 
into unknown variables 

The new equation is not a physical equation but a fictitious one. 
 

𝜃𝜃(𝑡𝑡 + 1) = 𝜃𝜃(𝑡𝑡) + 𝑣𝑣𝜃𝜃(𝑡𝑡) 
 
(core dynamics) this is the equation of 
something constant, in fact θ(t) is 
indeed a constant vector of parameters. 

(fictitious noise) we need it to force KF 
to find the right value of θ. It there were 
no noise KF might stay fixed on the 
initial condition. 

 
This equation is not an asymptotically stable system but a simply stable system.   
 
The choice of Vθ is a design choice. We can usually assume that vθ(t) is a set of 
independent WN with the same variance: 

•  𝑣𝑣1 ⊥ 𝑣𝑣𝜃𝜃; 𝑣𝑣2 ⊥ 𝑣𝑣𝜃𝜃  
•  𝜆𝜆1,𝜃𝜃

2 = ⋯ = 𝜆𝜆𝑛𝑛𝜃𝜃,𝜃𝜃
2  

 
How the choice of 𝜆𝜆𝜃𝜃

2  parameters influences the estimation: 
 
 



Large values of 𝜆𝜆𝜃𝜃
2  → fast 

convergence but noisy at 
steady state. k 
Small values of 𝜆𝜆𝜃𝜃 

2  → slow 
convergence, less noise at 
steady state. 
 
 

 
Simulation Error Method (SEM) 
 
We will now see a parametric identification approach 
based on Simulation Error method. 

1. Collect data from an experiment: {𝑢𝑢�(1), … , 𝑢𝑢�(𝑁𝑁) }, {𝑦𝑦�(1), … , 𝑦𝑦�(𝑁𝑁) } 
2. Define model structure: 𝑦𝑦(𝑡𝑡) = 𝑚𝑚(𝑢𝑢(𝑡𝑡); 𝜃̅𝜃; 𝜃𝜃) 

𝜃̅𝜃 set of known parameters 
θ set of unknown parameters (possibly with bounds) 

3. Performance index definition SEM 

𝐽𝐽𝑁𝑁(𝜃𝜃) =
1
𝑁𝑁

�(
𝐻𝐻

𝑡𝑡=1

𝑦𝑦�(𝑡𝑡)�
Measured 

output

−𝑚𝑚(𝑢𝑢�(𝑡𝑡); 𝜃̅𝜃; 𝜃𝜃)�����������
Measured
freq.resp

 )2 
�����������������������

sample variance of the simulation error

 

4. Optimization: 𝜃𝜃�𝑁𝑁 = argmin
𝜃𝜃

{𝐽𝐽𝑁𝑁(𝜃𝜃)} 

Usually: 
- no analytic expression of JN(θ) is available 
- each computation of JN(θ) requires an entire simulation of the model 
- JN(θ) is non quadratic and non-convex function so iterative and randomized 

optimization methods must be used 
These conditions make SEM computationally very demanding 

 
PEM for black-box 
We want to estimate from data this I/O model 

𝑦𝑦(𝑡𝑡) =
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1

1 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2 𝑢𝑢(𝑡𝑡 − 1) 𝜃𝜃 = �
𝑎𝑎1
⋮

𝑏𝑏1

� 

Time domain 
𝑦𝑦(𝑡𝑡) = −𝑎𝑎1𝑦𝑦(𝑡𝑡 − 1) − 𝑎𝑎2𝑦𝑦(𝑡𝑡 − 2) + 𝑏𝑏0𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏1(𝑡𝑡 − 2) 

 
Using Prediction Error Method (measured data) 

𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) = −𝑎𝑎1𝑦𝑦�(𝑡𝑡 − 1) − 𝑎𝑎2𝑦𝑦�(𝑡𝑡 − 2) + 𝑏𝑏0𝑢𝑢�(𝑡𝑡 − 2) + 𝑏𝑏1𝑢𝑢�(𝑡𝑡 − 2) 
 

𝐽𝐽𝑁𝑁(𝜃𝜃) =
1
𝑁𝑁

��𝑦𝑦�(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1; 𝜃𝜃)�2
∞

𝑡𝑡=1

= 

=
1
𝑁𝑁

�[𝑦𝑦�(𝑡𝑡) + 𝑎𝑎1𝑦𝑦�(𝑡𝑡 − 1) + 𝑎𝑎2(𝑡𝑡 − 2) + 𝑏𝑏0𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏1(𝑡𝑡 − 2)]2
∞

𝑡𝑡=1

 

This is a quadratic function of θ; thus the minimization is very simple.  



 
PEM vs SEM 
P.E.M. 
 
𝑦𝑦�(𝑡𝑡) = −𝑎𝑎1𝑦𝑦�(𝑡𝑡 − 1) − 𝑎𝑎2𝑦𝑦�(𝑡𝑡 − 2) + 𝑏𝑏0𝑢𝑢�(𝑡𝑡 − 1) + 𝑏𝑏1𝑢𝑢�(𝑡𝑡 − 2) 
 
Old values of simulated output 
Measured values 

𝐽𝐽𝑁𝑁(𝜃𝜃) =
1
𝑁𝑁

�[𝑦𝑦�(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡; 𝜃𝜃)]2
𝑁𝑁

𝑡𝑡=1

= 

            =
1
𝑁𝑁

�[𝑦𝑦�(𝑡𝑡) + 𝑎𝑎1𝑦𝑦�(𝑡𝑡 − 1) + 𝑎𝑎2𝑦𝑦�(𝑡𝑡 − 2) − 𝑏𝑏0𝑢𝑢�(𝑡𝑡 − 1) − 𝑏𝑏1𝑢𝑢�(𝑡𝑡 − 2)]2
𝑁𝑁

𝑡𝑡=1

 

 
Which is highly non-linear w.r.t. θ (non-quadratic, non-
convex). 
 
 
P.E.M 
Disadvantages of P.E.M.: 

1. P.E.M. is much less robust to noise and we must 
include a model of the noise in the estimated model. 
We need a ARMAX instead of ARX  

𝑦𝑦(𝑡𝑡) =
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1

1 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2 𝑢𝑢(𝑡𝑡 − 1) +
1 + 𝑐𝑐1𝑧𝑧−1 + ⋯ + 𝑐𝑐𝑛𝑛𝑧𝑧−𝑛𝑛

1 + 𝑎𝑎1𝑧𝑧−1 + 𝑎𝑎2𝑧𝑧−2 𝑒𝑒(𝑡𝑡) 

ARX would be linear in the parameter vector: 
𝑦𝑦(𝑡𝑡) = 𝑏𝑏0𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏1(𝑡𝑡 − 2) − 𝑎𝑎1𝑦𝑦(𝑡𝑡 − 1) − 𝑎𝑎2𝑦𝑦(𝑡𝑡 − 2) 

but ARMAX isn’t, therefore JN(θ) is highly non-linear → same complexity as S.E.M. 
2. P.E.M. is very sensitive to sampling time choice. 

If Δ is very small so is the difference between 𝑦𝑦�(𝑡𝑡), 𝑦𝑦�(𝑡𝑡 − 1). As a result the P.E.M. 
tends to provide this solution 

𝜃𝜃 = �

𝑎𝑎1 → −1
𝑎𝑎2 → 0
𝑏𝑏0 → 0
𝑏𝑏1 → 0

� → 𝑦𝑦�(𝑡𝑡) ≈ 𝑦𝑦�(𝑡𝑡 − 1) 

This is due to the fact that the recursive part of the model is using past measures 
of the output instead of past values of the time model outputs. 

 
Summary page 71 

  



6. Minimum Variance Control (MVC) 
design and analysis of feedback systems 
 
Setup of the problem  
 
Consider a generic ARMAX model 
 

𝑦𝑦(𝑡𝑡) =
𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧) 𝑢𝑢(𝑡𝑡 − 𝑘𝑘) +

𝐶𝐶(𝑧𝑧)
𝐴𝐴(𝑧𝑧) 𝑒𝑒(𝑡𝑡) 

𝑒𝑒 ~ 𝑊𝑊𝑊𝑊(0, 𝜆𝜆2) 

𝐵𝐵(𝑧𝑧) = 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + ⋯ + 𝑏𝑏𝑝𝑝𝑧𝑧−𝑝𝑝 
𝐴𝐴(𝑧𝑧) = 1 + 𝑎𝑎1𝑧𝑧−1 + ⋯ + 𝑎𝑎𝑚𝑚𝑧𝑧−𝑚𝑚 
𝐶𝐶(𝑧𝑧) = 1 + 𝑐𝑐1𝑧𝑧−1 + ⋯ + 𝑐𝑐𝑛𝑛𝑧𝑧−𝑛𝑛 

 
Assumptions: 

• C(z)/A(z) is in canonical form 
- zero relative degree 
- C(z), A(z) are coprime 
- C(z), A(z) are monics (a0, b0 = 1) 
- C(z), A(z) are stable 

• b ≠ 0 
thus k is the actual delay of the system 

• B(z)/A(z) is “minimum phase” 
roots of B(z) are strictly inside the uni-circle 

 
Control design for non-phase systems is difficult ant it requires a special design 
technique 
 
                                              min phase system response 

 
the response of non min phase systems (at the beginning the response moves away 
from the final value. 
 



We wish to obtain the 
optimal tracking of the 
desired behavior of 
output  

 
In a non-formal way 
M.V.C. tries to minimize 
the performance index 
 

𝐽𝐽 = E[(𝑦𝑦(𝑡𝑡) − 𝑦𝑦𝑜𝑜(𝑡𝑡))2] 
 
Variance of the tracking error  
 
(Small) technical assumptions 

• 𝑦𝑦𝑜𝑜(𝑡𝑡) ⊥ 𝑒𝑒(𝑡𝑡) 
• yo(t) is known only up to time t 

being yo(t+k|t) totally unpredictable, the best prediction is simply yo(t). 
 
Remark: there are 2 sub-classes of control problems 

1) when yo(t) is constant or stepwise → regulation problem 
2) when yo(t) is varying → tracking problem 

 

 
 
Simplified Problem #1 
 

𝑆𝑆: 𝑦𝑦(𝑡𝑡) = 𝑎𝑎𝑎𝑎(𝑡𝑡 − 1) + 𝑏𝑏0𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 2) 

𝑦𝑦(𝑡𝑡) =
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1

1 − 𝑎𝑎 𝑧𝑧−1 𝑢𝑢(𝑡𝑡 − 1) + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
We assume 𝑦𝑦𝑜𝑜(𝑡𝑡) = 𝑦𝑦�𝑜𝑜 (regulation problem) 
b0 ≠ 0 roots(B(z)) inside uni-cirlce 
 
To design M.V.Controller we have to minimize  

𝐽𝐽 = E�(𝑦𝑦(𝑡𝑡) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2] 
There is no noise for E[⋅] to remove, 𝑦𝑦𝑜𝑜(𝑡𝑡) = 𝑦𝑦�𝑜𝑜, we plug in S expression. 



𝐽𝐽 = (𝑎𝑎 𝑦𝑦(𝑡𝑡 − 1) + 𝑏𝑏0𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 2) − 𝑦𝑦�𝑜𝑜)2 
Time shift 

𝐽𝐽 = (𝑎𝑎 𝑦𝑦(𝑡𝑡) + 𝑏𝑏0𝑢𝑢(𝑡𝑡) + 𝑏𝑏1𝑢𝑢(𝑡𝑡) − 𝑦𝑦�𝑜𝑜)2 
Derivative w.r.t. u(t) 

𝜕𝜕 𝐽𝐽
𝜕𝜕𝜕𝜕(𝑡𝑡) = 2(𝑎𝑎 𝑦𝑦(𝑡𝑡) + 𝑏𝑏0𝑢𝑢(𝑡𝑡) + 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 1) − 𝑦𝑦�𝑜𝑜) ∙ 𝑏𝑏0 = 0 

(at time t: y(t), y(t-1), y(t-2), u(t-1), u(t-2) are no longer variables but numbers) 
 

𝑢𝑢(𝑡𝑡) = �𝑦𝑦�𝑜𝑜 − 𝑎𝑎 𝑦𝑦(𝑡𝑡)� ∙
1

𝑏𝑏𝑜𝑜 + 𝑏𝑏1𝑧𝑧−1 

 
Simplified Problem #2 
 

𝑆𝑆: 𝑦𝑦(𝑡𝑡) = 𝑎𝑎𝑎𝑎(𝑡𝑡 − 1) + 𝑏𝑏0𝑢𝑢(𝑡𝑡 − 1) + 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 2) + 𝑒𝑒(𝑡𝑡) 
 
Assumptions: b0 ≠ 0 roots(B(z)) inside uni-cirlce 
 

𝑦𝑦(𝑡𝑡) = 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1)�������
prediction
of 𝑦𝑦(𝑡𝑡) at
time 𝑡𝑡−1

+𝜀𝜀(𝑡𝑡)���
corresponding

prediction
error

 

Since k = 1 → ε(t) = e(t) 
 
𝐽𝐽 = E ��𝑦𝑦(𝑡𝑡) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2� = 

   = E ��𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) + 𝑒𝑒(𝑡𝑡) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2� = 

   = E ��𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2� + E[𝑒𝑒(𝑡𝑡)2] +  2E�𝑒𝑒(𝑡𝑡) ∙ �𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) − 𝑦𝑦𝑜𝑜(𝑡𝑡)��  
 

𝑒𝑒(𝑡𝑡) ⊥ 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1)  
by construction 

e(𝑡𝑡) ⊥ 𝑦𝑦𝑜𝑜(𝑡𝑡)  
by assumption 

E[𝑒𝑒(𝑡𝑡)2] = 𝜆𝜆2 

 
argmin

𝑢𝑢(𝑡𝑡)
�E ��𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2�� 

Now we must compute the 1-step predictor for S.  
 

𝑆𝑆: 𝑦𝑦(𝑡𝑡) =
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1

1 − 𝑎𝑎 𝑧𝑧−1 𝑢𝑢(𝑡𝑡 − 1) +
1

1 − 𝑎𝑎 𝑧𝑧−1 𝑒𝑒(𝑡𝑡) 
 



ARMAX(1,0,1+1) = ARX(1,2) 
ARMAX 1-step predictor 

𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) =
𝐵𝐵(𝑧𝑧)
𝐶𝐶(𝑧𝑧) 𝑢𝑢(𝑡𝑡 − 1) +

𝐶𝐶(𝑧𝑧) − 𝐴𝐴(𝑧𝑧)
𝐶𝐶(𝑧𝑧) 𝑦𝑦(𝑡𝑡) 

𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1) = (𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1) 𝑢𝑢(𝑡𝑡 − 1) + 𝑎𝑎 𝑦𝑦(𝑡𝑡 − 1) 
 
Shift and impose: 𝑦𝑦�(𝑡𝑡 + 1|𝑡𝑡) = 𝑦𝑦𝑜𝑜(𝑡𝑡 + 1) 
 

𝑦𝑦𝑜𝑜(𝑡𝑡 + 1) = 𝑏𝑏0𝑢𝑢(𝑡𝑡) + 𝑏𝑏1𝑢𝑢(𝑡𝑡 − 1) + 𝑎𝑎 𝑦𝑦(𝑡𝑡) 
 

𝑢𝑢(𝑡𝑡) = (𝑦𝑦0(𝑡𝑡) − 𝑎𝑎𝑎𝑎(𝑡𝑡)) ∙
1

𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 𝑦𝑦0(𝑡𝑡 + 1) = 𝑦𝑦0(𝑡𝑡) 

 
Let us analyze stability and performance 
of the obtained system. 

 
Stability 
To check the closed loop stability 

1. compute the loop function:  
L(z) = F1(z) ⋅ F2(z) 

2. build the characteristic polynomial: 
X(z) = LN(z) + LD(z) 

3. find the roots of X(z) → closed loop system is asymptotically stable iff all the 
roots of X(z) are inside the uni-circle. 

 

𝐿𝐿(𝑧𝑧) =
1

𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 ∙
𝑧𝑧−1(𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1)

1 − 𝑎𝑎 𝑧𝑧−1 ∙ 𝑎𝑎 

𝑋𝑋(𝑧𝑧) = 𝑎𝑎 𝑧𝑧−1(𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1) + (1 − 𝑎𝑎 𝑧𝑧−1)(𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1) = 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 = 𝐵𝐵(𝑧𝑧) 
 
Thanks to min-phase assumption we know that roots(B(z)) are inside uni-circle. 
 
Performance 
Since the system is LTI we can use the super position principle. 
 

𝑦𝑦(𝑡𝑡) = 𝐹𝐹𝑦𝑦𝑜𝑜,𝑦𝑦(𝑧𝑧)𝑦𝑦𝑜𝑜(𝑡𝑡) + 𝐹𝐹𝑒𝑒,𝑦𝑦(𝑧𝑧)𝑒𝑒(𝑡𝑡) 

𝐹𝐹𝑦𝑦𝑜𝑜,𝑦𝑦(𝑧𝑧) =

1
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 ∙ 𝑧𝑧−1(𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1)

1 − 𝑎𝑎1𝑧𝑧−1

1 + 1
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 𝑧𝑧−1 ∙ 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1

1 − 𝑎𝑎𝑧𝑧−1 𝑎𝑎 
= ⋯ = 𝑧𝑧−1 

𝐹𝐹𝑒𝑒,𝑦𝑦(𝑧𝑧) =
1

1 − 𝑎𝑎 𝑧𝑧−1

1 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = ⋯ = 1 

 
Thus, the closed loop system has very simple closed-loop behavior, which is our optimal 
control, the best possible solution: 
 

𝑦𝑦(𝑧𝑧) = 𝑦𝑦𝑜𝑜(𝑡𝑡 − 1) + 𝑒𝑒(𝑡𝑡) 
 



General Solution 
 

𝑆𝑆: 𝑦𝑦(𝑡𝑡) =
𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧) 𝑢𝑢(𝑡𝑡 − 𝑘𝑘) −

𝐶𝐶(𝑧𝑧)
𝐴𝐴(𝑧𝑧) 𝑒𝑒(𝑡𝑡) 

Assumptions: 
• b0 ≠ 0 
• B(z) has all roots strictly inside uni-circle (S is min-phase) 
• C(z)/ A(z) is in canonical representation  
• yo(t) is unpredictable → yo(t+k|t) = yo(t) 
• yo(t) ⟂ e(t) 

 
We need to minimize the performance index 
𝐽𝐽 = E ��𝑦𝑦(𝑡𝑡) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2� = 𝑦𝑦(𝑡𝑡) = 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 𝑘𝑘) + 𝜀𝜀(𝑡𝑡)

   = E ��𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 𝑘𝑘) + 𝜀𝜀(𝑡𝑡) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2� = 

   = E ��𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 𝑘𝑘) − 𝑦𝑦𝑜𝑜(𝑡𝑡)�2� + E[𝜀𝜀(𝑡𝑡)2] +  2E�𝜀𝜀(𝑡𝑡) ∙ �𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 𝑘𝑘) − 𝑦𝑦𝑜𝑜(𝑡𝑡)��  
 
Since E[𝜀𝜀(𝑡𝑡)2] does not depend on u(t) the optimal solution is: 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 𝑘𝑘) = 𝑦𝑦𝑜𝑜(𝑡𝑡) 
We now use the ARMAX predictor, shifted k-step ahead. 

𝑦𝑦�(𝑡𝑡 + 𝑘𝑘|𝑡𝑡) =
𝐵𝐵(𝑧𝑧)𝐸𝐸(𝑧𝑧)

𝐶𝐶(𝑧𝑧) 𝑢𝑢(𝑡𝑡) +
𝑅𝑅�(𝑧𝑧)
𝐶𝐶(𝑧𝑧) 𝑦𝑦(𝑡𝑡) = 𝑦𝑦𝑜𝑜(𝑡𝑡 + 𝑘𝑘) ~ 𝑦𝑦𝑜𝑜(𝑡𝑡) 

𝒖𝒖(𝒕𝒕) =
𝟏𝟏

𝑩𝑩(𝒛𝒛)𝑬𝑬(𝒛𝒛) (𝑪𝑪(𝒛𝒛)𝒚𝒚𝒐𝒐(𝒕𝒕) − 𝑹𝑹�(𝒛𝒛)𝒚𝒚(𝒛𝒛)) 

 
Stability 

𝐿𝐿(𝑧𝑧) =
1

𝐵𝐵(𝑧𝑧)𝐸𝐸(𝑧𝑧) ∙
𝑧𝑧−𝑘𝑘𝐵𝐵(𝑧𝑧)

𝐴𝐴(𝑧𝑧) 𝑅𝑅�(𝑧𝑧) 

𝑋𝑋(𝑧𝑧) = 𝑧𝑧−𝑘𝑘𝐵𝐵(𝑧𝑧)𝑅𝑅�(𝑧𝑧) +  𝐵𝐵(𝑧𝑧)𝐸𝐸(𝑧𝑧)𝐴𝐴(𝑧𝑧) 
          = 𝐵𝐵(𝑧𝑧) �𝑧𝑧−𝑘𝑘𝑅𝑅�(𝑧𝑧) + 𝐸𝐸(𝑧𝑧)𝐴𝐴(𝑧𝑧)� 
          = 𝐵𝐵(𝑧𝑧)𝐶𝐶(𝑧𝑧) 
 

• roots(C(z)) are stable since C(z) is in canonical representation 
• roots(B(z)) are stable because of initial assumptions 

 



Performance  
𝑦𝑦(𝑡𝑡) = 𝐹𝐹𝑦𝑦𝑜𝑜,𝑦𝑦(𝑧𝑧)𝑦𝑦𝑜𝑜(𝑡𝑡) + 𝐹𝐹𝑒𝑒,𝑦𝑦(𝑧𝑧)𝑒𝑒(𝑡𝑡) 

𝐹𝐹𝑦𝑦𝑜𝑜,𝑦𝑦(𝑧𝑧) =
𝐶𝐶(𝑧𝑧) 1

𝐵𝐵(𝑧𝑧)𝐸𝐸(𝑧𝑧) ∙ 𝑧𝑧−𝑘𝑘𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧)

1 + 1
𝐵𝐵(𝑧𝑧)𝐸𝐸(𝑧𝑧) ∙ 𝑧𝑧−𝑘𝑘𝐵𝐵(𝑧𝑧)

𝐴𝐴(𝑧𝑧) 𝑅𝑅�(𝑧𝑧)
= ⋯ = 𝑧𝑧−𝑘𝑘 

𝐹𝐹𝑒𝑒,𝑦𝑦(𝑧𝑧) =
𝐶𝐶(𝑧𝑧) 𝐴𝐴(𝑧𝑧)⁄

1 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = ⋯ = 𝐸𝐸(𝑧𝑧) 

Thus, the closed loop system has very simple closed-loop behavior, which is our optimal 
control, y(t) exactly tracks yo(t) but with k-step delay and it is disturbed by noise 
(prediction error k-step ahead): 
 

𝑦𝑦(𝑧𝑧) = 𝑦𝑦𝑜𝑜(𝑡𝑡 − 𝑘𝑘) + 𝐸𝐸(𝑧𝑧) ∙ 𝑒𝑒(𝑡𝑡) 
Remark: 
M.V.Controller pushes all the system poles into the N.O. and/or N.C. parts of the system 
(by making internal cancellations), this generates no problem since we verified that the 
system is internally asymptotically stable.  
 
G.M.V.C. 
Main limits of M.V.C. are 

• can be applied only to min-phase systems 
• we cannot moderate the control/actuator effort 
• we cannot design a specific behavior from yo(t) → y(t) 

 
To overcome those limits, we need an extension called Generalized M.V.C. in which the 
performance index is extended. 
 

𝐽𝐽 = E ��𝑃𝑃(𝑧𝑧)𝑦𝑦(𝑡𝑡) − 𝑦𝑦𝑜𝑜(𝑡𝑡) + 𝑄𝑄(𝑧𝑧)𝑢𝑢(𝑡𝑡)�2� 
• P(z) is a t.f. called reference model 
• Q(z) is a t.f. moderates the use of u(t), it does so by making a penalty to big 

values of u(t) 
• In M.V.C.: P(z)=1, Q(z) = 0 

 
Remark on P(z) 
When we have a feedback system and we want to 
obtain the best possible tracking the most intuitive 
solution is to have a closed loop control = 1.  
However, in most cases perfect tracking is not the 
best solution, it is better to track on a reference 
model. 
 
Example 
Car’s cruise control. 



 
 
If P(z)=1 v(t) should follow vo(t) as fast 
as possible. 

With P(z) design you can smoothen the 
behavior 

  



7. Discretization of Analog systems 
(valid for identification and control) 
 
We need 2 interfaces, to make 
the system and the control 
algorithm communicate 
correctly. 
 
High quality A/D converters uses 
a small sampling time ΔT and a 
amplitude discretization with a 
high number of levels. 
 
 
In case of black-box system identification from 
measured data we directly estimate a discrete 
Time model. 
If we have a physical white-box model, we need to 
discretize.  
 
Discretization 
 
State Space Transformation 
Given sampling time ΔT. 

 
 

Continuous time 

𝑆𝑆: �𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵
𝑦𝑦 = 𝐶𝐶𝐶𝐶 + 𝐷𝐷𝐷𝐷 

 
 

Transformation 
Formulas 
𝐹𝐹 = 𝑒𝑒𝐴𝐴 ΔT 

………….𝐺𝐺 = ∫ 𝑒𝑒𝐴𝐴𝐴𝐴𝐵𝐵 𝑑𝑑𝑑𝑑ΔT
0  

………….𝐻𝐻 = 𝐶𝐶 
………….𝐷𝐷 = 𝐷𝐷 

 
 

Discrete time 

𝑆𝑆: �𝑥𝑥(𝑡𝑡 + 1) = 𝐹𝐹𝐹𝐹(𝑡𝑡) + 𝐺𝐺𝐺𝐺(𝑡𝑡)
𝑦𝑦(𝑡𝑡) = 𝐻𝐻𝐻𝐻(𝑡𝑡) + 𝐷𝐷𝐷𝐷(𝑡𝑡)  

 
It can be proven that the eigenvalues (poles) follow the “sampling transformation rule”. 
 

𝒵𝒵⏟
𝒵𝒵−domain

𝐷𝐷.𝑇𝑇.

= 𝑒𝑒𝑠𝑠 ΔT�
𝑠𝑠−domain

C.T.

⇒ 𝜆𝜆𝐹𝐹 = 𝑒𝑒𝜆𝜆𝐴𝐴Δ𝑇𝑇 

 
The stable region of continuous time is the left plane ℜ𝔢𝔢>0.  
The stable region of discrete time is the uni-circle. 
 
The axis origin in c.t. is mapped in 1+0j. 
 
There is no simple rule for the zeroes. We can only say if G(s) is strictly proper (K > h) 

𝐺𝐺(𝑠𝑠) =
poly. in "s" with ℎ zeros
poly. in "s" with 𝑘𝑘 poles

 

We apply discretization rule (s.s.) 



𝐺𝐺(𝒵𝒵) =
poly. in "𝒵𝒵" with 𝑘𝑘 − 1 zeros

poly. in "𝒵𝒵" with 𝑘𝑘 poles
 

So, G(𝒵𝒵) has relative degree = 1 
In 𝒵𝒵 we have k – h – 1 are generated by the discretization, they are called hidden zeros. 
Unfortunately, they are frequently unstable, because of this we need, for instance, 
G.M.V.C. (which can deal with non-min-phase systems) to design control system.  
 
Discretization of time derivative 𝒙̇𝒙 
Euler Backward 

𝑥̇𝑥(𝑡𝑡)�
𝐶𝐶.𝑇𝑇.

≅
𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 1)

Δ𝑇𝑇
=

𝑥𝑥(𝑡𝑡) − 𝑧𝑧−1𝑥𝑥(𝑡𝑡)
Δ𝑇𝑇

=
𝑧𝑧 − 1
𝑧𝑧Δ𝑇𝑇

∙ 𝑥𝑥(𝑡𝑡) 

Euler Forward 

𝑥̇𝑥(𝑡𝑡) =
𝑥𝑥(𝑡𝑡 + 1) − 𝑥𝑥(𝑡𝑡)

Δ𝑇𝑇
=

𝑧𝑧 − 1
Δ𝑇𝑇

∙ 𝑥𝑥(𝑡𝑡) 
 
General formula for this approach 

𝑥̇𝑥(𝑡𝑡) = �
𝑧𝑧 − 1

Δ𝑇𝑇
∙

1
𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)� 𝑥𝑥(𝑡𝑡) 

0 ≤ α ≤ 1    special cases: 
• If α = 0 → Euler Forward 
• If α = 1 → Euler Backward 
• If α = ½ → Tustin Method 

 
Once we decide the sampling frequency 
ωs(=2π/ΔT) the highest frequency we get 
is the Nyquist freq. ωN. however the closer 
we get to ωN the worst the approximation 
is.  
 
However, choosing an excessive small ΔT 
might be cost prohibitive 

• Sampling devices might be too 
expensive 

• Computational cost 
• Cost of memory 
• Numerical Precision cost 

 
If we choose a too small ΔT all the poles go to the same region, because we squeeze all 
poles close to 1+0j. The effect of this is that we need very high numerical precision to 
avoid instability.  
 
Rule of thumb of control engineers 
→ fs is between 10 and 20 times the 
system bandwidth we are interested 
in.  



 
Remark another way of managing 
the choice of ΔT w.r.t. the aliasing 
problem (signal processing 
perspective).  
 
If we make the spectrum of the 
analog signal, we want to convert 
into digital we obtain the bandwidth 
of the full spectral content of 𝑥𝑥�(𝑡𝑡).  
 
Before we convert it to digital, we 
might have an anti-alias low-pass 
filter, which cuts it off at the Nyquist 
frequency. 
Fully digital approach:  
 
 
 
 
   


