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Disclaimer

This document was written following the slides provided by the professor Roberto Tedesco and
especially the book ’Speech and Language Processing’. I mainly used the 3rd edition of the
book, which is freely available here: https://web.stanford.edu/~jurafsky/slp3/, but since
as I’m writing some chapters are not available yet, also the 2nd edition was consulted.

1 Introduction

Natural language processing (NLP) is a subfield of linguistics, computer science, information
engineering, and artificial intelligence concerned with the interactions between computers and
human (natural) languages, in particular how to program computers to process and analyze
large amounts of natural language data.
Challenges in natural language processing frequently involve speech recognition, natural lan-
guage understanding, and natural language generation.

1.1 Some terminology

Before we talk about processing words, we need to decide what counts as a word. Let’s start by
looking at one particular corpus (plural corpora), a computer-readable collection of text or
speech. For example the Brown corpus is a million-word collection of samples from 500 written
English texts from different genres (newspaper, fiction, non-fiction, academic, etc.), assembled
at Brown University in 1963–64.

How many words are in the following Brown sentence?

They picnicked by the pool, then lay back on the grass and looked at the stars.

This sentence has 16 words if we don’t count punctuation marks as words, 18 if we count
punctuation. Whether we treat period (“.”), comma (“,”), and so on as words depends on the
task.
More precisely, we talk about Token if we consider every word, no matter if it is repeated in
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the sentence, while we talk about Types if we consider unique words. In the previous sentence,
for example, we have 18 tokens and 16 types.

Another interesting distinction is the following: how about inflected forms like cats versus cat?
These two words have the same lemma cat but are different wordforms. A lemma is a set of
lexical forms having the same stem, the same major part-of-speech, and the same word sense.
The wordform is the full inflected or derived form of the word. For morphologically complex
languages like Arabic, we often need to deal with lemmatization. For many tasks in English,
however, wordforms are sufficient.

2 Error Correction

Spelling correction is often considered from two perspectives. Non-word spelling correction is
the detection and correction of spelling errors that result in non-words (like graffe for giraffe).
By contrast, real word spelling correction is the task of detecting and correcting spelling errors
even if they accidentally result in an actual word of English (real-word errors).
Non-word errors are detected by looking for any word not found in a dictionary. For example,
the misspelling graffe above would not occur in a dictionary. The larger the dictionary the
better; modern systems often use enormous dictionaries derived from the web. To correct non-
word spelling errors we first generate candidates: real words that have a similar letter sequence
to the error. Candidate corrections from the spelling error graffe might include giraffe, graf,
gaffe, grail, or craft. We then rank the candidates using a distance metric between the source
and the surface error.

2.1 Edit Distance

Edit distance gives us a way to quantify both of these intuitions about string similarity. More
formally, the minimum edit distance between two strings is defined distance as the minimum
number of editing operations (operations like insertion, deletion, substitution) needed to trans-
form one string into another. The gap between intention and execution, for example, is 5.

We can also assign a particular cost or weight to each of these operations. The Levenshtein
distance between two sequences is the simplest weighting factor in which each of the three
operations has a cost of 1.

To solve the Minimum Edit Distance problem we can use Dynamic Programming, in particular
the minimum edit distance algorithm, named by Wagner and Fischer (1974).

Real word spelling error detection is a much more difficult task, since any word in the input
text could be an error. Still, it is possible to use the noisy channel to find candidates for each
word w typed by the user, and rank the correction that is most likely to have been the users
original intention.
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2.2 The Noisy Channel Model

This noisy channel model is a kind of Bayesian inference: we see an observation x (a mis-
spelled word) and our job is to find the word w that generated this misspelled word. Out of all
possible words in the vocabulary V we want to find the word w such that P (w|x) is highest:

ŵ = arg max
w∈V

P (w|x)

That thanks to the Bayes’ rule, it can be written as:

ŵ = arg max
w∈V

P (x|w)P (w)

P (x)

Since we will compute the above formula for each word and P (x) does not change, we can
discard it, obtaining the simpler:

ŵ = arg max
w∈V

P (x|w)P (w)

In order to understand how these quantities are computed, let’s consider an example, applying
the algorithm to the misspelled acress.

1st - Find the candidates
We will use the minimum distance edit algorithm introduced before, but extended with a new
type of edit, i.e. transpositions, in which two letters are swapped. This version is called
Damerau-Levenshtein edit distance.

2nd - Compute the prior and the likelihood
The prior probability P (w) is the language model probability of the word w in context, which
can be computed using any language model, from unigram to trigram or 4-gram. For this
example let’s assume a unigram language model.

Computing the likelihood P (x|w), also called the channel model, is much more difficult. A
perfect model of the probability that a word will be mistyped would condition on all sorts of
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factors: who the typist was, whether the typist was left-handed or right-handed, and so on.
Luckily, we can get a pretty reasonable estimate of P (x|w) just by looking at local context: the
identity of the correct letter itself, the misspelling, and the surrounding letters. For example,
the letters m and n are often substituted for each other.
A simple model might estimate p(acress|across) just using the number of times that the letter
e was substituted for the letter o in some large corpus of errors. What we need in order to apply
this approach is the so called Confusion Matrix.

Following Kernighan et al. (1990), we’ll use four confusion matrices.

del[x,y]: count(xy typed as x)
ins[x,y]: count(x typed as xy)
sub[x,y]: count(x typed as y)
trans[x,y]: count(xy typed as yx)

The confusion matrices can be downloaded online or constructed by iteratively applying this
very spelling error correction algorithm itself. The iterative algorithm first initializes the ma-
trices with equal values; thus, any character is equally likely to be deleted, equally likely to be
substituted for any other character, etc. Next, the spelling error correction algorithm is run
on a set of spelling errors. Given the set of typos paired with their predicted corrections, the
confusion matrices can now be recomputed, the spelling algorithm run again, and so on. This
iterative algorithm is an instance of the important EM algorithm.

Once we have the confusion matrix, we can estimate P (x|w) as follows:

P (x|w) =



del[xi−1,wi]
count[xi−1wi]

if deletion
ins[xi−1,wi]
count[wi−1] if insertion
sub[xi,wi]
count[wi]

if substitution
trans[wi,wi+1]
count[wiwi+1] if transposition

The results say that the noisy channel model chooses across as the best correction, and actress
as the second most likely word.
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Unfortunately, the algorithm was wrong here; the writer’s intention becomes clear from the
context: ...was called a ”stellar and versatile acress whose combination of sass and glamour
has defined her...”. The surrounding words make it clear that actress and not across was the
indended word.

This is why it is important to use larger language models than unigrams.

3 N-gram Language Models

In this section we will introduce models that assign a probability to each possible next word.
The same models will also serve to assign a probability to an entire sentence.

Such a model, for example, could predict that the following sequence has a much higher prob-
ability of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Models that assign probabilities to sequences of words are called language models or LMs.
In this chapter we introduce the simplest model that assigns probabilities to sentences and
sequences of words, the n-gram. An n-gram is a sequence of N words: a 2-gram (or bigram)
is a two-word sequence of words like “please turn”, “turn your”, or ”your homework”, and a
3-gram (or trigram) is a three-word sequence of words like “please turn your”, or “turn your
homework”.

Let’s begin with the task of computing P (w|h), the probability of a word w given some history h.
Suppose the history h is “its water is so transparent that” and we want to know the probability
that the next word is the:

P (the|its water is so transparent that)

One very simple way to estimate this probability is from relative frequency counts:

P (the|its water is so transparent that) =
C(its water is so transparent that the)

C(its water is so transparent that)

According to Google those counts are 5/9. As you can imagine, these numbers are too small to
represent a good estimate. This is because language is creative; new sentences are created all
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the time, and we won’t always be able to count entire sentences. Even simple extensions of the
example sentence may have counts of zero on the web.

3.1 The Chain Rule

P (A|B) =
P (A,B)

P (B)

P (A,B) = P (A|B)P (B)

For sequences:

P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|A,B,C)

This, considering the shorthand P (w1, w2, ..., wn) = P (wn1 ):

P (wn1 ) = P (w1)P (w2|w1)P (w3|w2
1)...P (wn|wn−1

1 ) =
n∏
k=1

P (wk|wk−1
1 )

The chain rule shows the link between computing the joint probability of a sequence and com-
puting the conditional probability of a word given previous words.

The problem with this formula is that, as said before, we don’t know any way to compute the
exact probability of a word given a long sequence of preceding words.
The intuition of the n-gram model is that instead of computing the probability of a word given
its entire history, we can approximate the history by just the last few words.

The bigram model, for example, approximates the probability of a word given all the previous
words by using only the conditional probability of the preceding word, thus making the following
approximation:

P (wn|wn−1
1 ) ≈ P (wn|wn−1)

The assumption that the probability of a word depends only on the previous word is called a
Markov assumption. Markov models are the class of probabilistic models that assume we
can predict the probability of some future unit without looking too far into the past.

The general equation for a n-gram approximation is:

P (wn|wn−1
1 ) ≈ P (wn|wn−1

n−N+1)

How do we estimate these bigram or n-gram probabilities? An intuitive way to estimate prob-
abilities is called Maximum Likelihood Estimation (MLE).

For the bigram case:

P (wn|wn−1) =
C(wn−1wn)∑
w C(wn−1w)

10



We can simplify this equation, since the sum of all bigram counts that start with a given word
wn−1 must be equal to the unigram count for that word wn−1.

P (wn|wn−1) =
C(wn−1wn)

C(wn−1)

Leading to the generalization:

P (wn|wn−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

Let’s now consider the data coming from the Berkeley Restaurant Project (bigram counts and
probabilities respectively):

It is interesting to notice that as crude as they are, N-gram probabilities capture a range of
interesting facts about language. In fact, some of the bigram probabilities above encode some
facts that we think of as strictly syntactic in nature, like the fact that what comes after eat is
usually a noun or an adjective, or that what comes after to is usually a verb. Others might be
a fact about the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher probability
that people are looking for Chinese versus English food.

3.2 Evaluating Language Models

Extrinsic evaluation
1) Put model A into an application
2) Evaluate the performance of the application with model A
3) Put model B into the application and evaluate
4) Compare performance of the application with the two models
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Unfortunately, running big NLP systems end-to-end is often very expensive. Instead, it would
be nice to have a metric that can be used to quickly evaluate potential improvements in a
language model.

Intrinsic evaluation
1) Train parameters of our model on a training set
2) Look at the models performance on some new data
3) So use a test set. A dataset which is different than our training set, but is drawn from the
same source
4) Then we need an evaluation metric to tell us how well our model is doing on the test set

One evaluation metric is the perplexity.

3.3 Perplexity

The perplexity (sometimes called PP for short) of a language model on a test set is the inverse
probability of the test set, normalized by the number of words. For a test set W = w1w2...wN :

PP (W ) = P (w1w2...wN )−
1
N = N

√
1

P (w1w2...wN )

Expanding with the chain-rule:

PP (W ) = N

√√√√ N∏
i=1

1

P (wi|w1...wi−1)

So on a bigram language model:

PP (W ) = N

√√√√ N∏
i=1

1

P (wi|wi−1)

Notice that minimizing perplexity is equivalent to maximizing the test set probability according
to the language model.

The perplexity of two language models is only comparable if they use identical vocabularies.

An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) improvement in
the performance of a language processing task like speech recognition or machine translation.
Nonetheless, because perplexity often correlates with such improvements, it is commonly used
as a quick check on an algorithm. But a model’s improvement in perplexity should always be
confirmed by an end-to-end evaluation of a real task before concluding the evaluation of the
model.
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3.4 Generalization and Zeros

The n-gram model, like many statistical models, is dependent on the training corpus. One
implication of this is that the probabilities often encode specific facts about a given training
corpus. Another implication is that n-grams do a better and better job of modeling the training
corpus as we increase the value of N.

This can be easily visualized by using the Shannon’s method, that consists of generating
random sentences from different n-gram models:

1) Sample a random bigram (< s >,w) according to its probability P (w| < s >)
2) Now sample a random bigram (w, x) according to its probability P (x|w)
3) And so on until we randomly choose a (y,< /s >)
4) String the words together

The longer the context on which we train the model, the more coherent the sentences. However,
notice that the text generated by quadrigrams looks like Shakespeare because it is Shakespeare!
The words It cannot be but so, indeed, are directly from King John. This is due to the fact
that the Shakespeare oeuvre is not very large as corpora go; we have N = 884, 647 tokens
and V = 29, 066 types and our n-gram probability matrices are ridiculously sparse (out of
V 2 = 844 million possible bigrams types Shakespeare actually produced 300,000 bigram types).

So, two important things here:

1) There is a dependence of the grammar on its training set, thus according to what you want
to accomplish, you have to select a proper corpus.
2) In the above example 99.96% of the possible bigrams were never seen (have zero entries in
the table). This is the biggest problem in language modeling.

3.5 Smoothing

What do we do with words that are in our vocabulary (they are not unknown words) but appear
in a test set in an unseen context (for example they appear after a word they never appeared
after in training)? To keep a language model from assigning zero probability to these unseen
events, we’ll have to shave off a bit of probability mass from some more frequent events and
give it to the events we’ve never seen. This modification is called smoothing or discounting.

13



3.5.1 Laplace Smoothing

The simplest way to do smoothing is to add one to all the bigram counts, before we normalize
them into probabilities. All the counts that used to be zero will now have a count of 1, the counts
of 1 will be 2, and so on. This algorithm is called Laplace smoothing. Laplace smoothing
does not perform well enough to be used in modern n-gram models, but it usefully introduces
many of the concepts that we see in other smoothing algorithms, gives a useful baseline, and is
also a practical smoothing algorithm for other tasks like text classification.

Recalling that

P (wi) =
ci
N

Since there are V words in the vocabulary and each one was incremented, we also need to adjust
the denominator to take into account the extra V observations:

P ∗(wi) =
ci + 1

N + V

Instead of changing both the numerator and denominator, it is convenient to describe how a
smoothing algorithm affects the numerator, by defining an adjusted count c∗. This adjusted
count is easier to compare directly with the MLE counts and can be turned into a probability
like an MLE count by normalizing by N .

c∗i = (ci + 1)
N

N + V

P ∗(wi) =
c∗i
N

So, starting from

Knowing that

P ∗(wn|wn−1) =
C(wn−1wn) + 1

C(wn−1) + V

We can reconstruct the counting matrix in the following way

c∗(wn−1wn) =
[C(wn−1wn) + 1]× C(wn−1)

C(wn−1) + V
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Note that add-one smoothing has made a very big change to the counts. C(want to) changed
from 608 to 238! We can see this in probability space as well: P(to—want) decreases from .66
to .26. The sharp change in counts and probabilities occurs because too much probability mass
is moved to all the zeros.

3.5.2 Add-k smoothing

One alternative to add-one smoothing is to move a bit less of the probability mass from the
seen to the unseen events. Instead of adding 1 to each count, we add a fractional count k (.5?
.05? .01?).

P ∗Add−k(wn|wn−1) =
C(wn−1wn) + k

C(wn−1) + kV

The value of k can be chosen by cross-validation.

3.5.3 Good-Turing smoothing

The basic insight of Good-Turing smoothing is to re-estimate the amount of probability mass
to assign to N-grams with zero or low counts by looking at the number of N-grams with higher
counts. In other words, we estimate the probability of words occurring c times with adjusted
MLE estimation of words occurring c+ 1 times:

c∗ = (c+ 1)
Nc+1

Nc

For example, the revised count for the bigrams that never occurred (c0) is estimated by dividing
the number of bigrams that occurred once by the number of bigrams that never occurred.

Observations
1) Note that the Good-Turing estimate relies on the assumption that we know N0, the number
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of bigrams we haven’t seen. We know this because given a vocabulary of size V , the total
number of bigrams is V 2, hence N0 is V 2 minus all the bigrams we have seen.

2) In practice, this discounted estimate c∗ is not used for all counts c. Large counts (where
c > k for some threshold k) are assumed to be reliable. Katz (1987) suggested setting k at 5.
Introducing k makes the correct equation for c∗ more complicated:

c∗ =
(c+ 1)Nc+1

Nc
− c (k+1)Nk+1

N1

1− (k+1)Nk+1

N1

for 1 ≤ c ≤ k

3) Good-Turing is usually used in combination with backoff and interpolation.

3.5.4 Backoff and Interpolation

If we are trying to compute P (wn|wn−2wn−1) but we have no examples of a particular tri-
gram wn−2wn−1wn, we can instead estimate its probability by using the bigram probability
P (wn|wn−1). Similarly, if we don’t have counts to compute P (wn|wn−1), we can look to the
unigram P (wn).
In backoff, we use the trigram if the evidence is sufficient, otherwise we use the bigram, other-
wise the unigram. In other words, we only “back off” to a lower-order n-gram if we have zero
evidence for a higher-order n-gram.

By contrast, in interpolation we always mix the probability estimates from all the n-gram
estimators, weighting and combining the trigram, bigram, and unigram counts.

Simple linear interpolation

P̂ (wn|wn−2wn−1) = λ1P (wn|wn−2wn−1) + λ2P (wn|wn−1) + λ3P (wn)

such that
∑

i λi = 1

Lambdas conditional on context

P̂ (wn|wn−2wn−1) = λ1(wn−1
n−2)P (wn|wn−2wn−1) + λ2(wn−1

n−2)P (wn|wn−1) + λ3(wn−1
n−2)P (wn)

such that
∑

i λi(w
n−1
n−2) = 1

How are these λ values set?

Both the simple interpolation and conditional interpolation λs are learned from a held-out
corpus. A held-out corpus is an additional training corpus that we use to set hyperparameters
like these λ values, by choosing the λ values that maximize the likelihood of the held-out corpus.
One way is to use the EM algorithm, an iterative algorithm that converges to locally optimal
λs.

3.5.5 Katz Backoff

Katz backoff combines both backoff and discounting approaches in the following way: we rely
on a discounted probability P ∗ if we’ve seen this n-gram before (i.e., if we have non-zero counts).
Otherwise, we recursively back off to the Katz probability for the shorter-history (N-1)-gram.
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Pkatz(wn|wn−1
n−N+1) =

{
P ∗(wn|wn−1

n−N+1) if C(wnn−N+1) > 0

α(wn−1
n−N+1)Pkatz(wn|wn−1

n−N+2) otherwise

The probability P ∗(wn|wn−1
n−N+1) will be slightly less than the MLE estimate

c(wn
n−N+1)

c(wn−1
n−N+1)

, i.e. on

average the c∗ will be less than c. This will leave some probability mass for the lower order
n-grams. Now we need to build the α weighting we’ll need for passing this mass to the lower-
order n-grams. Let’s represent the total amount of left-over probability mass by the function
β, a function of the n-1-gram context.

β(wn−1
n−N+1) = 1−

∑
wn:C(wn

n−N+1)>0

P ∗(wn|wn−1
n−N+1)

This gives us the total probability mass the we are ready to distribute to all n-1-gram (e.g.
bigrams if our original model was a trigram). Each individual n-1-gram will only get a fraction
of this mass, so we need to normalize β by the total probability of all the n-1-grams that begin
some n-gram.

α(wn−1
n−N+1) =

β(wn−1
n−N+1)∑

wn:C(wn
n−N+1)=0 Pkatz(wn|w

n−1
n−N+2)

3.6 Unknown Words

Usually a language model is learned starting from:

• A collection of documents;

• A vocabulary (i.e. a lexicon) containing all the words we want to recognize (generated
from the document collection).

Then, the document collection is split into two parts:

• A training set, used for learning the language model;

• A test set, used for testing the language model (e.g. perplexity).

At training time, the words not found into the training set are managed using smoothing/interpolation/backoff.
At test time, using the test set, no new words can appear.
At run-time, we can adopt two different approaches:

• Closed vocabulary: we assume that new words cannot appear. This is a reasonable
assumption in some domains, such as speech recognition or machine translation.

• Open vocabulary: new words may appear, called unknown words or out of vocabulary
(OOV) words. We don’t use smoothing/interpolation/backoff for these, but we create an
unknown word token < UNK >. There are two common ways to train the probabilities
of the unknown word model < UNK >. The first one is to turn the problem back into a
closed vocabulary one by choosing a fixed vocabulary in advance:
1) Choose a vocabulary (word list) that is fixed in advance;
2) Convert in the training set any word that is not in this set (any OOV word) to the
unknown word token < UNK > in a text normalization step;
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3) Estimate the probabilities for < UNK > from its counts just like any other regular
word in the training set.
The second alternative, in situations where we don’t have a prior vocabulary in advance, is
to create such a vocabulary implicitly, replacing words in the training data by < UNK >
based on their frequency. For example, we can replace all words that occur fewer than n
times in the training set, where n is some small number, or equivalently select a vocabulary
size V in advance (say 50,000) and choose the top V words by frequency and replace the
rest by UNK. In either case, we then proceed to train the language model as before,
treating < UNK > like a regular word.

The exact choice of < UNK > model does have an effect on metrics like perplexity. A language
model can achieve low perplexity by choosing a small vocabulary and assigning the unknown
word a high probability. For this reason, perplexities should only be compared across language
models with the same vocabularies.

4 Part-Of-Speech Tagging

Parts-of-speech (also known as POS, word classes, or syntactic categories) are useful because
they reveal a lot about a word and its neighbors. Knowing whether a word is a noun or a
verb tells us about likely neighboring words (nouns are preceded by determiners and adjectives,
verbs by nouns) and syntactic structure word (nouns are generally part of noun phrases), making
part-of-speech tagging a key aspect of parsing.
In this section we will introduce POS and two algorithms for POS tagging, the task of assigning
parts-of-speech to words. One is generative - Hidden Markov Model (HMM) - and one
is discriminative - Maximum Entropy Markov Model (MEMM). Also Recurrent Neural
Network (RNN) can be used to approach this problem. These three models have roughly equal
performance but different tradeoffs.

4.1 Open e Closed Classes

Parts-of-speech can be divided into two broad supercategories: closed class types and open class
types. Closed classes are those with relatively fixed membership, such as prepositions—new
prepositions are rarely coined. By contrast, nouns and verbs are open classes—new nouns and
verbs like iPhone or to fax are continually being created or borrowed.
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4.2 The Tagset

To do POS tagging, we need to choose a standard set of tags to work with. An important tagset
for English is the 45-tag Penn Treebank tagset.

4.3 Measuring Ambiguity

Tagging is a disambiguation task; words are ambiguous—have more than one possible part-of-
speech—and the goal is to find the correct tag for the situation. For example, book can be a
verb (book that flight) or a noun (hand me that book). The goal of POS-tagging is to resolve
these ambiguities, choosing the proper tag for the context.
But how common is tag ambiguity?

Nonetheless, many words are easy to disambiguate, because their different tags aren’t equally
likely. For example, a can be a determiner or the letter a, but the determiner sense is much
more likely. This idea suggests a simplistic baseline algorithm for part-of-speech tagging: given
an ambiguous word, choose the tag which is most frequent in the training corpus.

How good is this baseline? A standard way to measure the performance of part-of-speech taggers
is accuracy: the percentage of tags correctly labeled. If we train on the WSJ training corpus and
test on sections 22-24 of the same corpus the most-frequent-tag baseline achieves an accuracy of
92.34%. By contrast, the state of the art in part-of-speech tagging on this dataset is around 97%
tag accuracy, a performance that is achievable by most algorithms (HMMs, MEMMs, neural
networks, rule-based algorithms).
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4.4 Hidden Markov Model Tagging

Disclaimer: in this introduction part I will skip some concepts since they were already treated
in the Machine Learning course. If you want to better understand these models, read the relative
section in the book.

The HMM is a sequence model. A sequence model or sequence classifier is a model whose job
is to assign a label or class to each unit in a sequence, thus mapping a sequence of observations
to a sequence of labels. An HMM is a probabilistic sequence model: given a sequence of units
(words, letters, morphemes, sentences, whatever), it computes a probability distribution over
possible sequences of labels and chooses the best label sequence.

4.4.1 Markov Chains

The HMM is based on augmenting the Markov chain. A Markov chain is a model that tells
us something about the probabilities of sequences of random variables, states, each of which
can take on values from some set. These sets can be words, or tags, or symbols representing
anything, for example the weather.

A Markov chain makes a very strong assumption that if we want to predict the future in the
sequence, all that matters is the current state.

P (qi = a|q1...qi−1) = P (qi = a|qi−1)

A Markov chain is useful when we need to compute a probability for a sequence of observable
events. In many cases, however, the events we are interested in are hidden: we don’t observe
them directly. For example we don’t normally observe part-of-speech tags in a text. Rather,
we see words, and must infer the tags from the word sequence.
That’s why we need a hidden Markov model, which is specified by the following components:

< Q,A,O,B, π >

where Q is a set of N states, A a transition probability matrix, O a sequence of T observations,
B a sequence of observation likelihoods, also called emission probabilities, each expressing the
probability of an observation ot being generated from a state i, and π an initial probability
distribution over states.
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A first-order hidden Markov model instantiates two simplifying assumptions. First, the Markov
assumption already discussed above. Second, the probability of an output observation oi de-
pends only on the state that produced that observation qi and not on any other states or any
other observations.

4.4.2 HMM tagging as decoding

An HMM has two components, the A and B probabilities:

• The A matrix contains the tag transition probabilities P (ti|ti−1), which represent the
probability of a tag occurring given the previous tag;

• The B emission probabilities P (wi|ti) represent the probability, given a tag, that it will
be associated with a given word.

For any model, such as an HMM, that contains hidden variables, the task of determining the
hidden variables sequence corresponding to the sequence of observations decoding is called
decoding.

Decoding: Given as input a HMM λ = (A,B) and a sequence of observations O = o1, o2, ..., oT ,
find the most probable sequence of states Q = q1q2q3...qT .

In our case the goal of HMM decoding is to choose the tag sequence tn1 that is most probable
given the observation sequence of n words wn1 :

t̂n1 = arg max
tn1

P (tn1 |wn1 )

How do we compute this value? We’ll use Bayes’ rule:

t̂n1 = arg max
tn1

P (wn1 |tn1 )P (tn1 )

P (wn1 )

By dropping the denominator:

t̂n1 = arg max
tn1

P (wn1 |tn1 )P (tn1 )

HMM taggers make two further simplifying assumptions. The first is that the probability of a
word appearing depends only on its own tag and is independent of neighboring words and tags:

P (wn1 |tn1 ) ≈
n∏
i=1

P (wi|ti)

The second assumption, the bigram assumption, is that the probability of a tag is dependent
only on the previous tag, rather than the entire tag sequence:

P (tn1 ) ≈
n∏
i=1

P (ti|ti−1)
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Plugging the simplifying assumptions into our equation for t̂n1 we obtain:

t̂n1 = arg max
tn1

P (wn1 |tn1 )P (tn1 ) = arg max
tn1

n∏
i=1

P (wi|ti)P (ti|ti−1)

Note that the two parts correspond neatly to the B emission probability and A transition
probability that we just defined above!

4.4.3 The Viterbi Algorithm

The Viterbi algorithm first sets up a probability matrix or lattice, with one column for each
observation ot and one row for each state in the state graph.
Each cell of the trellis, vt(j), represents the probability that the HMM is in state j after seeing
the first t observations and passing through the most probable state sequence q1, ..., qt−1, given
the HMM λ.

vt(j) = maxq1,...,qt−1P (q1...qt−1, o1, o2...ot, qt = j|λ)

Given that we had already computed the probability of being in every state at time t − 1 we
compute the Viterbi probability by taking the most probable of the extensions of the paths that
lead to the current cell:

vt(j) = maxNi=1vt−1(i)aijbj(ot)

where

• vt−1(i) is the previous Viterbi path probability from the previous time step;

• aij is the transition probability from previous state qi to current state qj ;

22



• bj(ot) is the state observation likelihood of the observation symbol ot given the current
state j.

Practical HMM taggers have a number of extensions of this simple model. One important
missing feature is a wider tag context. Extending the algorithm from bigram to trigram taggers
gives a small (perhaps a half point) increase in performance, but conditioning on two previous
tags instead of one requires a significant change to the Viterbi algorithm.
Moreover, when the number of states grows very large, the vanilla Viterbi algorithm can be
slow. The complexity of the algorithm is O(N2T ), where N (the number of states) can be
large for trigram taggers, which have to consider every previous pair of the 45 tags, resulting
in 453 = 91, 125 computations per column. One common solution to the complexity problem is
the use of beam search decoding. We will not discuss this approach, but just to give an idea
in beam search, instead of keeping the entire column of states at each time point t, we just keep
the best few hypothesis at that point.

5 Formal Grammars

The word syntax comes from the Greek, it means “setting out together or arrangement”, and
refers to the way words are arranged together. We will focus on the context-free grammars,
since they are the backbone of many formal models of the syntax of natural language (and,
for that matter, of computer languages). As such, they are integral to many computational
applications, including grammar checking, semantic interpretation, dialogue understanding, and
machine translation. They are powerful enough to express sophisticated relations among the
words in a sentence, yet computationally tractable enough that efficient algorithms exist for
parsing sentences with them.

5.1 Constituency

The fundamental idea of consistency is that groups of words may behave as a single unit or
phrase, called a constituent. A significant part of developing a grammar involves discovering
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the inventory of constituents present in the language.

How do words group together in English? Consider the noun phrase, a sequence of words
surrounding at least one noun, for example:

Harry the Horse
the Broadway coppers
they

What evidence do we have that these words group together (or “form constituents”)? One
piece of evidence is that they can all appear in similar syntactic environments, for example,
before a verb. Note however that while the whole noun phrase can occur before a verb, this is
not true of each of the individual words that make up a noun phrase. There is nothing easy
or obvious about how we come up with the right set of constituents and the rules that govern
how they combine. That’s why there are so many different theories of grammar and competing
analysis of the same data. The approach that we will use here will be very generic and it will
not correspond to any modern linguistic theory of grammar.

5.2 Context-Free Grammars

Disclaimer: in this section I will skip some concepts since they were already treated in the
Formal Languages and Compilers course. As always, if you want to go deeper, read the relative
sections on the book.

The most widely used formal system for modeling constituent structure in English and other nat-
ural languages is the Context-Free Grammar, or CFG. Context-free grammars are also called
Phrase-Structure Grammars, and the formalism is equivalent to Backus-Naur Form, or
BNF.

A context-free grammar consists of a set of rules or productions, each of which expresses the
ways that symbols of the language can be grouped and ordered together, and a lexicon of words
and symbols.

• Terminals (
∑

): for us these will be words

• Non-terminals (N):

– The constituents (like noun-phrase, verb-phrase...)

– The preterminals (e.g. POS tags)

– A special symbol S to start from

• Rules (R): < single non-terminal > → < any number of terminals and non-terminals >

Here an example:

NP → Det Nominal
NP → ProperNoun
Nominal → Noun — Nominal Noun

Note that in the third rule we have an explicit disjunction (OR) and a recursive definition, i.e.
the same non-terminal on the right and left-side of the rule.

A CFG can be thought of in two ways: as a device for generating sentences and as a device for
assigning a structure to a given sentence. Viewing a CFG as a generator, we can read the →
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arrow as “rewrite the symbol on the left with the string of symbols on the right”. The sequence
of rule expansions is called derivation. It is common to represent a derivation by using a parse
tree, like the one below:

generated according to the following grammar:

The problem of mapping from a string of words to its parse tree is called syntactic parsing.

5.3 Noun Phrases

Let’s now consider the rule NP → Det Nominal more in detail, since most of the complexity of
English noun phrases is hidden in this rule. These noun phrases consist of a head, the central
noun in the noun phrase, along with various modifiers that can occur before or after the head
noun.
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5.3.1 Agreement

By agreement we have in mind constraints that hold among various constituents that take
part in a rule or set of rules. For example, in English, determiners and the head nouns in NPs
have to agree in their number:

This flight and not This flights
Those flights and not Those flight

The problem is that our earlier NP rule does not capture this constraint: it accepts and assigns
correct structures to grammatical examples (this flight), but it is also happy with incorrect
examples. Such a rule is said to overgenerate.

5.4 Verb Phrases

English VPs consist of a head verb along with 0 or more following constituents which we will
call arguments.

VP → Verb disappear
VP → Verb NP prefer a morning flight
VP → Verb NP PP leave Boston in the morning
VP → Verb PP leaving on Thursday

5.4.1 Subcategorization

Verb phrases can be significantly more complicated than this. Many other kinds of constituents,
such as an entire embedded sentence, can follow the verb. Similarly, another potential con-
stituent of the VP is another VP. This is often the case for verbs like want, would like, try,
intend, need.
While a verb phrase can have many possible kinds of constituents, not every verb is compatible
with every verb phrase. For example, the verb want can be used either with an NP complement
(I want a flight...) or with an infinitive VP complement (I want to fly to...). By contrast, a
verb like find cannot take this sort of VP complement (*I found to fly to Dallas).
This idea that verbs are compatible with different kinds of complements is a very old one;
traditional grammar distinguishes between transitive verbs like find, which take a direct object
NP (I found a flight), and intransitive verbs like disappear, which do not (*I disappeared a
flight). Where traditional grammars subcategorize verbs into these two categories (transitive
and intransitive), modern grammars distinguish as many as 100 subcategories.

5.5 Solution for Agreement and Subcategorization

So, as with agreement phenomena, we need a way to formally express the constraints. A possible
solution consists of creating ad-hoc sub-classes. It works and stays within the power of CFGs,
however it increases the size of the grammar in a dramatic way. Other solutions exist, like the
so called feature-based grammars, which however do not solve completely the problem.
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5.6 Treebanks

Sufficiently robust grammars consisting of context-free grammar rules can be used to assign a
parse tree to any sentence. This means that it is possible to build a corpus where every sentence
in the collection is paired with a corresponding parse tree. Such a syntactically annotated corpus
is called a treebank.
A wide variety of treebanks have been created, generally through the use of parsers (of the
sort described in the next sections) to automatically parse each sentence, followed by the use
of humans (linguists) to hand-correct the parses. Penn TreeBank is a widely used treebank.

Note that treebanks implicitly define a grammar for the language covered in the treebank: we
can simply take the local rules that make up the sub-trees in all the trees in the collection and
we obtain a grammar. Of course, a not complete one, but if you have decent size corpus, you’ll
have a grammar with decent coverage.
However, such grammars tend to be very flat due to the fact that they tend to avoid recur-
sion. For example, among the approximately 4,500 different rules for expanding VPs there are
separate rules for PP sequences of any length and every possible arrangement of verb arguments:

VP → VBD PP
VP → VBD PP PP
VP → VBD PP PP PP
VP → VBD PP PP PP PP

This fact (and others) about the treebank grammars pose problems for probabilistic parsing
algorithms. For this reason, it is common to make various modifications to a grammar extracted
from a treebank.

5.6.1 Heads and Head Finding

Regarding probabilistic parsing, of which we will talk later, one very important and common
task is that of finding heads in treebank trees. In one simple model of lexical heads, each context-
free rule is associated with a head. The head is the word in the phrase that is grammatically
the most important. Heads are passed up the parse tree; thus, each non-terminal in a parse
tree is annotated with a single word, which is its lexical head.

For the generation of such a tree, each CFG rule must be augmented to identify one right-side
constituent to be the head daughter. The headword for a node is then set to the headword of
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its head daughter. Choosing these head daughters is simple for textbook examples (NN is the
head of NP) but is complicated and indeed controversial for most phrases. Modern linguistic
theories of syntax generally include a component that defines heads.

An alternative approach to find a head is used in most practical computational systems. Instead
of specifying head rules in the grammar itself, heads are identified dynamically in the context
of trees for specific sentences. In other words, once a sentence is parsed, the resulting tree is
walked to decorate each node with the appropriate head. Most current systems rely on a simple
set of hand-written rules:

If the last word is tagged POS, return last-word.
Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS, or
JJR.
Else search from left to right for the first child which is an NP.
Else search from right to left for the first child which is a $, ADJP, or PRN.
Else search from right to left for the first child which is a CD.
Else search from right to left for the first child which is a JJ, JJS, RB or QP.
Else return the last word.

6 Syntactic Parsing

Syntactic parsing is the task of recognizing a sentence and assigning a syntactic structure to
it. Since they are based on a purely declarative formalism, context-free grammars don’t specify
how the parse tree for a given sentence should be computed. We therefore need to specify
algorithms that employ these grammars to efficiently produce correct trees.

6.1 Ambiguity

Ambiguity is perhaps the most serious problem faced by syntactic parsers. Structural ambiguity
occurs when the grammar can assign more than one parse to a sentence.

Let’s consider for example the following sentence:

I shot an elephant in my pajamas.

Structural ambiguity, appropriately enough, comes in many forms. Two common kinds of
ambiguity are attachment ambiguity and coordination ambiguity.
A sentence has an attachment ambiguity if a particular constituent can be attached to the parse
tree at more than one place, e.g.

We saw the Eiffel Tower flying to Paris.

where the gerundive-VP flying to Paris can be part of a gerundive sentence whose subject is
the Eiffel Tower or it can be an adjunct modifying the VP headed by saw.

In coordination ambiguity different sets of phrases can be conjoined by a conjunction like and.
For example, the phrase old men and women can be bracketed as [old [men and women]],
referring to old men and old women, or as [old men] and [women], in which case it is only the
men who are old.
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The fact that there are many grammatically correct but semantically unreasonable parses for
naturally occurring sentences is an irksome problem that affects all parsers. Effective disam-
biguation algorithms require statistical, semantic, and contextual knowledge sources that vary
in how well they can be integrated into parsing algorithms.

6.1.1 Top-down and Bottom-up approaches

Before talking about more complex algorithms, let’s introduce a baseline approach, which con-
sists of seeing parsing as a search. More precisely, the parser can be viewed as searching through
the space of all possible parse trees to find the correct parse tree for the sentence. Just as the
search space of possible paths is defined by the structure of a FSA, so the search space of pos-
sible parse trees is defined by the grammar.
There exist two different ways with which we can perform this task:

• Top-Down Search: a top-down parser searches for a parse tree by trying to build from the
root node S down to the leaves.

• Bottom-Up Search: in bottom-up parsing the parser starts with the words of the input
and tries to build trees from the words up, by applying rules from the grammar one at a
time. The parse is successful if the parser succeeds in building a tree rooted in the start
symbol S that covers all of the input.

Each of these two architectures has its own advantages and disadvantages. The top-down ap-
proach only searches for trees that can be answers, but also suggests trees that are not consistent
with any of the words, while the bottom-up approach only forms trees consistent with the words,
but suggests trees that make no sense globally.

With that said, till now we left out how to keep track of the search space and how to make
choices, like how to choose the node to expand next and which grammar rule to use to expand
a node. One approach is called backtracking:

• Make a choice, if it works out then fine
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• If not then back up and make a different choice

This method is very simple, indeed it also has some problems. Backtracking methods are
doomed because of two inter-related problems:

• Structural ambiguity: the grammar assigns more than one possible parse to a phrase
(we have already discussed about this)

• Repeated parsing of subtrees

The structural ambiguity is exactly the problem that for example occurs in the sentence I shot
an elephant in my pajamas. The repeated parsing problem, instead, occur when we essentially
redo something we have already done, leading to duplicated work. Consider for example the
sentence “A flight from Indianapolis to Houston on TWA”. The correct parse is the following:

If we now assume that we have a top-down parser making choices between the two rules

Nominal → Noun
Nominal → Nominal PP

Statically choosing the rules in this order leads to a very bad result, since the algorithm will
fail three times before finding the correct parse tree.

6.1.2 Dynamic Programming approaches

Dynamic Programming provides a powerful framework for addressing these problems, just
as it did with the Minimum Edit Distance and Viterbi. Recall that dynamic programming
approaches systematically fill in tables of solutions to sub-problems. When complete, the tables
contain the solution to all the sub-problems needed to solve the problem as a whole. In the case
of syntactic parsing, these sub-problems represent parse trees for all the constituents detected
in the input. The dynamic programming advantage arises from the context-free nature of our
grammar rules — once a constituent has been discovered in a segment of the input we can record
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its presence and make it available for use in any subsequent derivation that might require it.
This provides both time and storage efficiencies since subtrees can be looked up in a table, not
reanalyzed.

Examples of algorithms that adopt this approach are the CKY algorithm and the Earley
algorithm. We will not analyze these algorithms (check the book if you are interested), but for
us it is enough to say that even if the CKY parsing algorithm can represent the ambiguities we
discussed in an efficient way, it is not equipped to resolve them. We therefore need a different
approach, a probabilistic approach. Before going on in that direction, however, let’s add a
small note: many language processing tasks do not require complex, complete parse trees for all
inputs. For these tasks, a partial parse, or shallow parse, of input sentences may be sufficient.
There are many different approaches to partial parsing. One of these is called chunking.
Chunking is the process of identifying and classifying the flat, non-overlapping segments of a
sentence that constitute the basic non-recursive phrases corresponding to the major content-
word parts-of-speech: noun phrases, verb phrases, adjective phrases, and prepositional phrases.

[NP The morning flight] [PP from] [NP Denver] [V P has arrived.]

This bracketing notation makes clear the two fundamental tasks that are involved in chunking:
segmenting (finding the non-overlapping extents of the chunks) and labeling (assigning the
correct tag to the discovered chunks).

State-of-the-art approaches to chunking use supervised machine learning to train a chunker by
using annotated data as a training set and training any sequence labeler. Given a training set,
any sequence model can be used. For example, we can use a simple feature-based model, using
features like the words and parts-of-speech within a 2 word window, and the chunk tags of the
preceding inputs in the window. In training, each training vector would consist of the values
of 13 features; the two words to the left of the decision point, their parts-of-speech and chunk
tags, the word to be tagged along with its part-of-speech, the two words that follow along with
their parts-of speech, and the correct chunk tag. During classification, the classifier is given the
same vector without the answer and assigns the most appropriate tag from its tagset. Viterbi
decoding is commonly used.

7 Statistical Parsing

7.1 Probabilistic Context Free Grammars (PCFG)

The simplest augmentation of the context-free grammar is the Probabilistic Context-Free Gram-
mar (PCFG), also known as the Stochastic Context-Free Grammar (SCFG), first proposed by
Booth (1969).

That is, a PCFG differs from a standard CFG by augmenting each rule in R with a conditional
probability:

A→ β [p]

Here p expresses the probability that the given non-terminal A will be expanded to the sequence
β. That is, p is the conditional probability of a given expansion β given the left-hand-side (LHS)
non-terminal A. We can represent this probability as:
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P (A→ β)

P (A→ β|A)

P (RHS|LHS)

Thus, if we consider all the possible expansions of a non-terminal, the sum of their probabilities
must be 1:

∑
β

P (A→ β) = 1

How are PCFGs used? A PCFG can be used to estimate a number of useful probabilities
concerning a sentence and its parse tree(s), including the probability of a particular parse tree
(useful in disambiguation) and the probability of a sentence or a piece of a sentence (useful
in language modeling).

7.2 PCFGs for Disambiguation

A PCFG assigns a probability to each parse tree T (i.e., each derivation) of a sentence S. The
probability of a particular parse T is defined as the product of the probabilities of all the n
rules used to expand each of the n non-terminal nodes in the parse tree T , where each rule i
can be expressed as LHSi → RHSi:

P (T, S) =
n∏
i=1

P (RHSi|LHSi)

The resulting probability P (T, S) is both the joint probability of the parse and the sentence
and also the probability of the parse P (T ). How can this be true? First, by the definition of
joint probability:

P (T, S) = P (T )P (S|T )

But since a parse tree includes all the words of the sentence, P (S|T ) is 1. Thus,

P (T, S) = P (T )P (S|T ) = P (T )

7.3 PCFGs for Language Modeling

A second attribute of a PCFG is that it assigns a probability to the string of words constituting
a sentence.
The probability of an unambiguous sentence is P (T, S) = P (T ).
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The probability of an ambiguous sentence is the sum of the probabilities of all the parse trees
for the sentence.

An additional feature of PCFGs that is useful for language modeling is their ability to assign a
probability to substrings of a sentence. For example, suppose we want to know the probability
of the next word wi in a sentence given all the words we’ve seen so far w1, ...wi−1. We saw that
a simple approximation of this probability can be obtained by using N-grams, conditioning on
only the last word or two instead of the entire context; but the fact that the N-gram model can
only make use of a couple words of context means it is ignoring potentially useful prediction
cues. PCFGs allow us to condition on the entire previous context.

7.4 Ways to Learn PCFG Rule Probabilities

Where do PCFG rule probabilities come from? The simplest way is to use a treebank, a corpus
of already parsed sentences. Given a treebank, we can compute the probability of each expansion
of a non-terminal by counting the number of times that expansion occurs and then normalizing:

P (α→ β|α) =
Count(α→ β)∑
γ Count(α→ γ)

7.5 Problems with PCFGs

While probabilistic context-free grammars are a natural extension to context-free grammars,
they have two main problems as probability estimators:

• Poor independence assumptions: CFG rules impose an independence assumption on
probabilities, resulting in poor modeling of structural dependencies across the parse tree.

• Lack of lexical conditioning: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization ambiguities, preposition attachment,
and coordinate structure ambiguities.

Let’s analyze these problems in more detail.

7.5.1 Structural Dependencies

Recall that in a CFG the expansion of a non-terminal is independent of the context, that is,
of the other nearby non-terminals in the parse tree. Similarly, in a PCFG, the probability of a
particular rule like NP → DetN is also independent of the rest of the tree. By definition, the
probability of a group of independent events is the product of their probabilities.
Unfortunately, this CFG independence assumption results in poor probability estimates. This
is because in English the choice of how a node expands can after all depend on the location of
the node in the parse tree. For example, in English it turns out that NPs that are syntactic
subjects are far more likely to be pronouns, and NPs that are syntactic objects are far more
likely to be non-pronominal:

Unfortunately, there is no way to represent this contextual difference in the probabilities in
a PCFG; there is no way to capture the fact that in subject position, the probability for
NP → PRP should go up to .91, while in object position, the probability for NP → DT NN
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should go up to .66. These dependencies could be captured if the probability of expanding
an NP as a pronoun (e.g., NP → PRP ) versus a lexical NP (e.g., NP → DT NN) were
conditioned on whether the NP was a subject or an object. We will see the parent annotation
technique for adding this kind of conditioning.

7.5.2 Lexical Dependencies

A second class of problems with PCFGs is their lack of sensitivity to the words in the parse
tree. Since prepositional phrases in English can modify a noun phrase or a verb phrase, when
a parser finds a prepositional phrase, it must decide where to attach it into the tree.

Why doesn’t a PCFG already deal with PP attachment ambiguities? The two parse trees have
almost exactly the same rules; they differ only since one has this rule:

V P → V BD NP PP

while the other one has:

V P → V BD NP
NP → NP PP

Depending on how these probabilities are set, a PCFG will always either prefer NP attachment
or V P attachment. As it happens, NP attachment is slightly more common in English, so if we
trained these rule probabilities on a corpus, we might always prefer NP attachment, causing us
to misparse this sentence.

What information in the input sentence lets us know that the above example requires VP
attachment? It should be clear that these preferences come from the identities of the verbs,
nouns, and prepositions. It seems that the affinity between the verb dumped and the preposition
into is greater than the affinity between the noun sacks and the preposition into, thus leading
to VP attachment.
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Coordination ambiguities are another case in which lexical dependencies are the key to
choosing the proper parse. If we consider the phrase dogs in houses and cats., because dogs is
semantically a better conjunct for cats than houses (and because most dogs can’t fit inside cats),
the parse [dogs in [NP houses and cats]] is intuitively unnatural and should be dispreferred.
The two parses, however, have exactly the same PCFG rules, and thus a PCFG will assign them
the same probability.

7.6 Improving PCFGs by Parent Annotation

Let’s start with the first of the two problems with PCFGs mentioned above: their inability to
model structural dependencies.

One idea would be to split the NP non-terminal into two versions: one for subjects, one for
objects. Having two nodes (e.g., NPsubject and NPobject) would allow us to correctly model
their different distributional properties, since we would have different probabilities for the rule
NPsubject → PRP and the rule NPobject → PRP .

One way to implement this intuition of splits is to do parent annotation (Johnson, 1998),
in which we annotate each node with its parent in the parse tree. Thus, an NP node that is
the subject of the sentence and hence has parent S would be annotated NPˆS, while a direct
object NP whose parent is V P would be annotated NPˆVP.

To deal with cases in which parent annotation is insufficient, we can also handwrite rules that
specify a particular node split based on other features of the tree. For example, to distinguish
between complementizer IN and subordinating conjunction IN, both of which can have the same
parent, we could write rules conditioned on other aspects of the tree such as the lexical identity
(the lexeme that is likely to be a complementizer, as a subordinating conjunction).
Node-splitting is not without problems; it increases the size of the grammar and hence reduces
the amount of training data available for each grammar rule, leading to overfitting. Thus, it is
important to split to just the correct level of granularity for a particular training set.

While early models employed hand-written rules to try to find an optimal number of non-
terminals, modern models automatically search for the optimal splits. One example is the split
and merge algorithm of Petrov et. al (2006), whose performance is the best of any parsing
algorithm on the Penn Treebank.
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7.7 Probabilistic Lexicalized CFGs

In this section, we discuss an alternative family of models in which instead of modifying the
grammar rules, we modify the probabilistic model of the parser to allow for lexicalized rules.
The resulting family of lexicalized parsers includes the well-known Collins parser (Collins,
1999) and Charniak parser (Charniak, 1997).

We saw in section 5.6.1 that syntactic constituents could be associated with a lexical head, and
we defined a lexicalized grammar in which each non-terminal in the tree is annotated with its
lexical head, where a rule like V P → V BD NP PP would be extended as

V P (dumped)→ V BD(dumped) NP (sacks) PP (into)

In the standard type of lexicalized grammar, we actually make a further extension, which is
to associate the head tag, the part-of-speech tags of the headwords, with the non-terminal
symbols as well.

V P (dumped, V BD)→ V BD(dumped, V BD) NP (sacks,NNS) PP (into, P )

A natural way to think of a lexicalized grammar is as a parent annotation, that is, as a simple
context-free grammar with many copies of each rule, one copy for each possible headword/head
tag for each constituent.
Note that in the image above Internal rules are distinguished from Lexical rules, since they
are associated with very different kinds of probabilities. The lexical rules are deterministic, that
is, they have probability 1.0 since a lexicalized pre-terminal like NN(bin,NN) can only expand
to the word bin. But for the internal rules, we need to estimate probabilities.

Now, how can we compute the MLE estimate for the probability for the rule V P (dumped, V BD)→
V BD(dumped, V BD) NP (sacks,NNS) PP (into, P )?
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C(V P (dumped, V DB)→ V DB(dumped, V DB) NP (sacks,NNS) PP (into, P ))

C(V P (dumped, V DB))

But there’s no way we can get good estimates of counts, because they are so specific: we’re
unlikely to see many (or even any) instances of a sentence with a verb phrase headed by dumped
that has one NP argument headed by sacks and a PP argument headed by into. In other words,
counts of fully lexicalized PCFG rules like this will be far too sparse, and most rule probabilities
will come out 0.

The idea of lexicalized parsing is to make some further independence assumptions to break
down each rule so that we would estimate the probability

P (V P (dumped, V BD)→ V BD(dumped, V BD) NP (sacks,NNS) PP (into, P ))

as the product of smaller independent probability estimates for which we could acquire reason-
able counts. One such method is the Collins parsing method.

7.7.1 The Collins parser

Modern statistical parsers differ in exactly which independence assumptions they make. In this
section we describe a simplified version of Collins’s worth knowing about.

The first intuition of the Collins parser is to think of the right-hand side of every (internal)
CFG rule as consisting of a head non-terminal, together with the nonterminals to the left of the
head and the non-terminals to the right of the head:

LHS → LnLn−1...L1HR1...Rn−1Rn

Now, instead of computing a single MLE probability for this rule, we are going to break down
this rule via a neat generative story, a slight simplification of what is called Collins Model
1. This new generative story is that given the left-hand side, we first generate the head of the
rule and then generate the dependents of the head, one by one, from the inside out. Each of
these generation steps will have its own probability. We also add a special STOP non-terminal
at the left and right edges of the rule; this non-terminal allows the model to know when to stop
generating dependents on a given side. We generate dependents on the left side of the head
until we’ve generated STOP on the left side of the head, at which point we move to the right
side of the head and start generating dependents there until we generate STOP.

P (V P (dumped, V BD)→ STOP V BD(dumped, V BD) NP (sacks,NNS) PP (into, P ) STOP )

Below you can see the generative story for this augmented rule. We make use of three kinds
of probabilities: PH for generating heads, PL for generating dependents on the left, and PR for
generating dependents on the right.

In summary, the probability of the rule

P (V P (dumped, V BD)→ V BD(dumped, V BD) NP (sacks,NNS) PP (into, P ))
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is estimated as

PH(V BD|V P, dumped)× PL(STOP |V P, V BD, dumped)

×PR(NP (sacks,NNS)|V P, V BD, dumped)

×PR(PP (into, P )|V P, V BD, dumped)

×PR(STOP |V P, V BD, dumped)

Each of these probabilities can be estimated from much smaller amounts of data, for example
the MLE for the component probability PR(NP (sacks,NNS)|V P, V BD, dumped) is

Count(V P (dumped, V BD) with NNS(sacks) as a daughter somewhere on the right)

Count(V P (dumped, V BD)

So, generally speaking, if H is a head with head word hw and head tag ht, lw/lt and rw/rt are
the word/tag on the left and right respectively, and P is the parent, then the probability of an
entire rule can be expressed as follows:

• 1. Generate the head of the phrase H(hw, ht) with probability PH(H(hw, ht)|P, hw, ht)

• 2. Generate modifiers to the left of the head with total probability

n+1∏
i=1

PL(Li(lwi, lti)|P,H, hw, ht)

such that Ln+1(lwn+1, ltn+1) = STOP , and we stop generating once we’ve generated a
STOP token.
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• 3. Generate modifiers to the right of the head with total probability

n+1∏
i=1

PP (Ri(rwi, rti)|P,H, hw, ht)

such that Rn+1(rwn+1, rtn+1) = STOP , and we stop generating once we’ve generated a
STOP token.

The actual Collins parser models are more complex than the one we described here. If you want
to know more about this, check the section 12.6.2 of the book (3 ed.).

8 Dependency Parsing

The focus of the three previous chapters has been on context-free grammars and their use in
automatically generating constituent-based representations. Here we present another family of
grammar formalisms called dependency grammars.

In these formalisms, phrasal constituents and phrase-structure rules do not play a direct role.
Instead, the syntactic structure of a sentence is described solely in terms of the words (or
lemmas) in a sentence and an associated set of directed binary grammatical relations that hold
among the words.

Relations among the words are illustrated above the sentence with directed, labeled arcs from
heads to dependents. These relationships directly encode important information that is often
buried in the more complex phrase-structure parses. For example, the arguments to the verb
prefer are directly linked to it in the dependency structure, while their connection to the main
verb is more distant in the phrase-structure tree.

A major advantage of dependency grammars is their ability to deal with languages that are
morphologically rich and have a relatively free word order. Indeed, a dependency grammar
approach abstracts away from word-order information, representing only the information that
is necessary for the parse.

8.1 Dependency Treebanks

As with constituent-based methods, treebanks play a critical role in the development and evalu-
ation of dependency parsers. Dependency treebanks have been created using similar approaches
to those already discussed, i.e. having human annotators directly generate dependency struc-
tures for a given corpus, or using automatic parsers to provide an initial parse and then having
annotators hand correct those parsers.
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8.2 Transition-Based Dependency Parsing

Disclaimer: this section was not covered during the course. I’m inserting it since I think it
is interesting to see at least one approach to dependency parsing and especially because it is a
good reference to the ’Formal Languages and Compilers’ course.

Our first approach to dependency parsing is motivated by a stack-based approach called shift-
reduce parsing originally developed for analyzing programming languages (Aho and Ullman,
1972). This classic approach is simple and elegant, employing a context-free grammar, a stack,
and a list of tokens to be parsed. Input tokens are successively shifted onto the stack and
the top two elements of the stack are matched against the right-hand side of the rules in the
grammar; when a match is found the matched elements are replaced on the stack (reduced) by
the non-terminal from the left-hand side of the rule being matched. We will adapt this approach
to our goals, altering the reduce operation so that instead of adding a non-terminal to a parse
tree, it introduces a dependency relation between a word and its head.

The idea is simple: given what is called a configuration, the parsing process consists of a
sequence of transitions through the space of possible configurations, in order to find a final
configuration where all the words have been accounted for and an appropriate dependency tree
has been synthesized.

In the standard approach to transition-based parsing, the operators used to produce new con-
figurations are surprisingly simple and correspond to the intuitive actions one might take in
creating a dependency tree by examining the words in a single pass over the input from left to
right.

• LEFTARC: Assert a head-dependent relation between the word at the top of stack and
the word directly beneath it; remove the lower word from the stack.

• RIGHTARC: Assert a head-dependent relation between the second word on the stack and
the word at the top; remove the word at the top of the stack;
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• SHIFT: Remove the word from the front of the input buffer and push it onto the stack.

The efficiency of transition-based parsers should be apparent from the algorithm. The com-
plexity is linear in the length of the sentence since it is based on a single left to right pass
through the words in the sentence. More specifically, each word must first be shifted onto the
stack and then later reduced.
Note that unlike the dynamic programming and search-based approaches previously discussed,
this approach is a straightforward greedy algorithm — the oracle provides a single choice at
each step and the parser proceeds with that choice, no other options are explored, no back-
tracking is employed, and a single parse is returned in the end.

8.2.1 Observations

1) The sequence given is not the only one that might lead to a reasonable parse. In general,
there may be more than one path that leads to the same result, and due to ambiguity, there
may be other transition sequences that lead to different equally valid parses.

2) We are assuming that the oracle always provides the correct operator at each point in the
parse — an assumption that is unlikely to be true in practice. As a result, given the greedy
nature of this algorithm, incorrect choices will lead to incorrect parses since the parser has no
opportunity to go back and pursue alternative choices. There are several techniques that allow
to explore the search space more fully.

3) For simplicity, we have illustrated this example without the labels on the dependency rela-
tions. To produce labeled trees, we can parameterize the LEFTARC and RIGHTARC operators
with dependency labels. This, of course, makes the job of the oracle more difficult since it now
has a much larger set of operators from which to choose.
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8.2.2 Creating an Oracle

State-of-the-art transition-based systems use supervised machine learning methods to train
classifiers that play the role of the oracle. Given appropriate training data, these methods learn
a function that maps from configurations to transition operators.
Over the years, the dominant approaches to training transition-based dependency parsers have
been multinomial logistic regression and support vector machines, both of which can
make effective use of large numbers of sparse features of the kind described in the last section.
More recently, neural network, or deep learning, approaches have been applied successfully
to transition-based parsing.

8.3 Graph-Based Dependency Parsing

Graph-based approaches to dependency parsing search through the space of possible trees for a
given sentence for a tree (or trees) that maximize some score. These methods encode the search
space as directed graphs and employ methods drawn from graph theory to search the space for
optimal solutions (e.g. Maximum Spanning Tree).

Disclaimer: As the previous section, also this one was not covered during the course. If you
want to go deeper, go to the chapter 13.5 of the book (3 ed.).

9 The Representation of Sentence Meaning

The approach to semantics introduced here, and elaborated on in the next two chapters, is based
on the idea that the meaning of linguistic expressions can be captured in formal structures called
meaning representations.
We need representations that bridge the gap from linguistic inputs to the knowledge of the
world needed to perform tasks. Consider the following ordinary language tasks that require
some form of semantic processing of natural language:

• Deciding what to order at a restaurant by reading a menu

• Learning to use a new piece of software by reading the manual

• Answering essay questions on an exam

• Realizing that you’ve been insulted

• Following recipes

Grammatical representations aren’t sufficient to accomplish these tasks.

9.1 Desiderata for Representations

Let’s see some of the basic requirements that a meaning representation must fulfill and some of
the complications that inevitably arise in the process of designing such meaning representations.
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9.1.1 Verifiability

Consider the following question:

Does Maharani serve vegetarian food?

This example illustrates the most basic requirement for a meaning representation: it must be
possible to use the representation to determine the relationship between the meaning of a sen-
tence and the state of the world as we know it. In other words, we need to be able to determine
the truth of our representations.
For now we can gloss this representation as Serves(Maharani, VegetarianFood). This representa-
tion of the input can be matched against our knowledge base of facts about a set of restaurants.
If the system finds a representation matching this proposition in its knowledge base, it can
return an affirmative answer. Otherwise, it must either say No if its knowledge of local restau-
rants is complete, or say that it doesn’t know if there is reason to believe that its knowledge is
incomplete.

9.1.2 Unambiguous Representations

Semantics, like all the other domains we have studied, is subject to ambiguity. Specifically,
individual linguistic expressions can have different meaning representations assigned to them
based on the circumstances in which they occur.

I wanna eat someplace that’s close to Polimi.

Given the allowable argument structures for the verb eat, this sentence can either mean that
the speaker wants to eat at some nearby location, or under a Godzilla-asspeaker interpretation,
the speaker may want to devour some nearby location. The answer generated by the system
for this request will depend on which interpretation is chosen as the correct one.

A concept closely related to ambiguity is vagueness. Like ambiguity, vagueness can make it dif-
ficult to determine what to do with a particular input on the basis of its meaning representation.
Vagueness, however, does not give rise to multiple representations.

I want to eat Italian food.

A vague representation of the meaning of this phrase may be appropriate for some purposes,
while a more specific representation may be needed for other purposes.

9.1.3 Canonical Form

The notion that single sentences can be assigned multiple meanings leads to the related phe-
nomenon of distinct inputs that should be assigned the same meaning representation.

• Does Maharani have vegetarian dishes?

• Do they have vegetarian food at Maharani?

• Are vegetarian dishes served at Maharani?

• Does Maharani serve vegetarian fare?
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9.1.4 Inference and Variables

Consider the sentence

Can vegetarians eat at Maharani?

Here, it would be a mistake to invoke canonical form to force our system to assign the same
representation to this request as for the previous examples. That this request results in the
same answer as the others arises, not because they mean the same thing, but because there
is a common-sense connection between what vegetarians eat and what vegetarian restaurants
serve. This is a fact about the world and not a fact about any particular kind of linguistic
regularity. This implies that no approach based on canonical form and simple matching will
give us an appropriate answer to this request. What is needed is a systematic way to connect the
meaning representation of this request with the facts about the world as they are represented
in a knowledge base.

We use the term inference to refer generically to a system’s ability to draw valid conclusions
based on the meaning representation of inputs and its store of background knowledge.

Now consider the following somewhat more complex request:

I’d like to find a restaurant where I can get vegetarian food.

Unlike our previous examples, this request does not make reference to any particular restaurant.
The user is expressing a desire for information about an unknown and unnamed entity that is
a restaurant that serves vegetarian food. Since this request does not mention any particular
restaurant, the kind of simple matching-based approach we have been advocating is not going
to work. Rather, answering this request requires a more complex kind of matching that involves
the use of variables.

Serves(x, VegetarianFood)

Matching such a proposition succeeds only if the variable x can be replaced by some known
object in the knowledge base in such a way that the entire proposition will then match.

9.1.5 Expressiveness

Finally, to be useful, a meaning representation scheme must be expressive enough to handle a
wide range of subject matter. The ideal situation would be to have a single meaning represen-
tation language that could adequately represent the meaning of any sensible natural language
utterance. Although this is probably too much to expect from any single representational
system, First-Order Logic is expressive enough to handle quite a lot of what needs to be
represented.

9.2 Semantic Networks

Semantic networks consist in a graphic notation introduced to model the organization of human
semantic memory, or memory for word concepts.

• node → word concept

• arc → relationship between word concepts
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In this approach, concepts coincide with words, thus making the knowledge modeling language-
dependent, like one can notice from the following examples:

9.3 First-Order Logic

First-Order Logic (FOL) is a flexible, well-understood, and computationally tractable meaning
representation language that satisfies many of the desiderata given before.

An additional attractive feature of FOL is that it makes very few specific commitments as to
how things ought to be represented. And, the specific commitments it does make are ones that
are fairly easy to live with and that are shared by many of the schemes mentioned earlier; the
represented world consists of objects, properties of objects, and relations among objects.

Disclaimer: the book gives a complete introduction to FOL, which I will not cover here. The
only thing I will discuss is the lambda notation.

9.3.1 Lambda notation

This notation provides a way to abstract from fully specified FOL formula in a way that will
be particularly useful for semantic analysis.

λx.P (x)

The usefulness of these l-expressions is based on the ability to apply them to logical terms to
yield new FOL expressions where the formal parameter variables are bound to the specified
terms. This process is known as λ-reduction and consists of a simple textual replacement of the
λ variables with the specified FOL terms, accompanied by the subsequent removal of the λ.

λx.λy.Near(x, y)(Bacaro)

λy.Near(Bacaro, y)
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9.3.2 Inference - Modus Ponens

This section briefly discusses modus ponens, the most widely implemented inference method
provided by FOL. Modus ponens is a familiar form of inference that corresponds to what is
informally known as if-then reasoning.

α

α =⇒ β

−−−−
β

A schema like this indicates that the formula below the line can be inferred from the formulas
above the line by some form of inference. Modus ponens simply states that if the left-hand side
of an implication rule is true, then the right-hand side of the rule can be inferred.

Modus ponens can be put to practical use in one of two ways: forward chaining and backward
chaining.

Forward chaining
In forward chaining systems, modus ponens is used in precisely the manner just described. In
this kind of arrangement, as soon as a new fact is added to the knowledge base, all applicable
implication rules are found and applied, each resulting in the addition of new facts to the
knowledge base. These new propositions in turn can be used to fire implication rules applicable
to them. The process continues until no further facts can be deduced. The forward chaining
approach has the advantage that facts will be present in the knowledge base when needed,
because, in a sense all inference is performed in advance. This can substantially reduce the
time needed to answer subsequent queries since they should all amount to simple lookups. The
disadvantage of this approach is that facts that will never be needed may be inferred and stored.

Backward chaining
In backward chaining, modus ponens is run in reverse to prove specific propsitions called queries.
The first step is to see if the query formula is true by determining if it is present in the knowledge
base. If it is not, then the next step is to search for applicable implication rules present in the
knowledge base. An applicable rule is one whereby the consequent of the rule matches the query
formula. If there are any such rules, then the query can be proved if the antecedent of any one
them can be shown to be true. Not surprisingly, this can be performed recursively by backward
chaining on the antecedent as a new query. The Prolog programming language is a backward
chaining system that implements this strategy.

While forward and backward reasoning are sound, neither is complete. This means that there
are valid inferences that cannot be found by systems using these methods alone. Fortunately,
there is an alternative inference technique called resolution that is sound and complete. Un-
fortunately, inference systems based on resolution are far more computationally expensive than
forward or backward chaining systems.
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9.4 Description Logics

Description logics are an effort to better specify the semantics of these earlier structured net-
work representations and to provide a conceptual framework that is especially well suited to
certain kinds of domain modeling. Formally, the term Description Logics refers to a family of
logical approaches that correspond to varying subsets of FOL.
When using Description Logics to model an application domain, the emphasis is on the repre-
sentation of knowledge about categories, individuals that belong to those categories, and the
relationships that can hold among these individuals.

Once we’ve specified the categories of interest in a particular domain, the next step is to arrange
them into a hierarchical structure. One way to do so is by asserting subsumption relations
between the appropriate concepts in a terminology. The subsumption relation is conventionally
written as C v D and is read as C is subsumed by D; that is, all members of the category C
are also members of the category D.

Having a hierarchy such as the one above tells us next to nothing about the concepts in it. We
certainly don’t know anything about what makes a restaurant a restaurant, much less Italian,
Chinese, or expensive. What is needed are additional assertions about what it means to be a
member of any of these categories. In Description Logics such statements come in the form of
relations between the concepts being described and other concepts in the domain.

ItalianRestaurant v Restaurant u ∃hasCuisine.ItalianCuisine

An equivalent statement in FOL would be

∀xItalianRestaurant(x) =⇒ Restaurant(x) ∧ (∃yServes(x, y) ∧ ItalianCuisine(y))
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9.5 Frame-based Representation

In frame-based systems objects are represented as feature-structures:

• Features (slots)

• Values (fillers)

• Values can, in turn, be a frame

For example, the sentence I believe Mary ate British food. can be represented as:

9.6 Ontologies

Ontologies and Natural Language Processing (NLP) can often be seen as two sides of the same
coin.

An Ontology Model is:

• the classification of entities

• modeling the relationships between those entities.

The purpose of NLP is:

• the identification of entities

• understanding the relationship between those entities.

Ontologies do not depend on the language:

Most ontologies are composed of:

• Classes (e.g. Wine, Winery)

• Individuals (e.g. champagne)

• Attributes (e.g. price)

• Relationships (e.g. Winery produces Wine)

and they can be used to represent both KBs and sentences.

9.6.1 The OWL Language

• OWL Lite: taxonomies and simple constraints

• OWL DL: permits to represent a Description Logic (decidable subset of FOL)
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• OWL Full: higher order logics (not decidable)

More details can be found at https://www.w3.org/OWL/.

9.7 Open and Closed World

• The closed world assumption (e.g. SQL): any statement that is not known to be true is
false. The system is assumed to have complete knowledge.

• The open world assumption (e.g. FOL, OWL): any statement that is not known to be
true is...unknown. The system does not have enough information to decide. This limits
the kinds of inferences an agent can make. On the other hand, however, it represents the
notion that no single agent has complete knowledge.

10 Semantic Analysis

This section presents a number of computational approaches to the problem of semantic anal-
ysis, the process whereby meaning representations of the kind discussed in the previous section
are composed and assigned to linguistic inputs.

10.1 Syntax-driven Semantic Analysis

This is the first approach that we’ll see. It assigns meaning representations to inputs based
solely on static knowledge from the lexicon and the grammar. In this approach, when we refer
to an input’s meaning, or meaning representation, we have in mind an impoverished represen-
tation that is both context-independent and inference-free. Nevertheless, we are interested in
this method since there are some limited application domains where such representations are
sufficient to produce useful results. Moreover, these impoverished representations can serve as
inputs to subsequent processes that can produce richer, more useful, meaning representations.

Syntax-driven semantic analysis is based on the principle of compositionality. The key idea
is that the meaning of a sentence can be composed from the meanings of its parts. Of course,
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when interpreted superficially, this principle is somewhat less than useful. Indeed, the meaning
of a sentence is not based solely on the words that make it up, it is based on the ordering,
grouping, and relations among the words in the sentence.
Note that this is simply another way of saying that the meaning of a sentence is partially based
on its syntactic structure.

As we can see from the figure above, the syntactic analysis of an input sentence will form the
input to a semantic analyzer. Note that although the diagram shows a parse tree as input,
other syntactic representations such as feature structures, or lexical dependency diagrams, can
be used.

Assumption:
In the syntax driven approach presented here, ambiguities arising from the syntax and the
lexicon will lead to the creation of multiple ambiguous meaning representations. It is not the
job of the semantic analyzer to resolve these ambiguities. Instead, it is the job of subsequent
interpretation processes with access to domain specific knowledge, and knowledge of context to
select among competing representations.

Let’s consider an example:

AyCaramba serves meat.

The above figure represents a simplified parse tree. As suggested by the dashed arrows, a seman-
tic analyzer, given this tree as input, might proceed by first retrieving a meaning representation
from the subtree corresponding to the verb serves. The analyzer might next retrieve meaning
representations corresponding to the two noun phrases in the sentence. Then, using the repre-
sentation acquired from the verb as a template, the noun phrase meaning representations can be
used to bind the appropriate variables in the verb representation, thus producing the meaning
representation for the sentence as a whole.

What’s the problem here? Well, the function used to interpret the tree must know, among other
things, that it is the verb that carries the template upon which the final representation is based,
where this verb occurs in the tree, where its corresponding arguments are, and which argument
fills which role in the verb’s meaning representation. In other words, it requires a good deal of
specific knowledge about this particular example and its parse tree.
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10.1.1 Semantic Augmentation to CFG Rules

We will begin by augmenting context-free-grammar rules with semantic attachments. These
attachments can be thought of as instructions that specify how to compute the meaning repre-
sentation of a construction from the meanings of its constituents parts.

A→ α1...αn {f(αj .sem, ..., αk.sem)}

This notation states that the meaning representation assigned to the construction A, which
we will denote as A.sem, can be computed by running the function f on some subset of the
semantic attachments of A’s constituents. Let’s see this in practice:

ProperNoun→ AyCaramba {AyCaramba}
MassNoun→ meat {Meat}

Note, however, that the subtrees corresponding to these rules do not directly contribute to the
final meaning representation. Rather, it is the NPs higher in the tree that contribute them to
the final representation. We can deal with this indirect contribution by stipulating that the
upper NPs obtain their meaning representations from the meanings of their children:

NP → ProperNoun {ProperNoun.sem}
NP →MassNoun {MassNoun.sem}

These rules state that the meaning representation of the noun phrases are the same as the
meaning representations of their individual components.

What about Verb → serves?

V erb→ serves {∃e, x, y Isa(e, Serving) ∧ Server(e, x) ∧ Served(e, y)}

Moving up to the parse tree, the next constituent to be considered is the VP that dominates both
serves and meat. Unlike the NPs, we can not simply copy the meaning of these children up to
the parent VP. Rather, we need to incorporate the meaning of the NP into the meaning of the
Verb and assign the resulting representation to the VP.sem. Fortunately, there is the lambda
notation we discussed, that provides exactly the kind of formal parameter functionality that
we need.

V erb→ serves {λxλy∃e Isa(e, Serving) ∧ Server(e, y) ∧ Served(e, x)}
V P → V erb NP {V erb.sem(NP.sem)}
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10.1.2 Idioms

There are many cases where the meaning of a constituent is not based on the meaning of its
parts, at least not in the straightforward compositional sense.

Coupons are just the tip of the iceberg.

The phrase the tip of the iceberg does not have much to do with tips or icebergs, instead it means
something like the beginning. The most straightforward way to handle idiomatic constructions
like this is to introduce new grammar rules specifically designed to handle them:

NP → the tip of the iceberg {Beginning}

Of course, this solution is not very efficient as it is not general enough to handle a lot of cases.
Idioms are far more frequent and far more productive than is generally recognized and pose
serious difficulties for many applications.

10.2 Semantic Grammars

Syntactic grammars are not well-suited for the task of semantic analysis. This mismatch typi-
cally manifests itself in the following three ways:

• Key semantic elements are often widely distributed across parse trees, thus complicating
the composition of the required meaning representation.

• Parse trees often contain many syntactically motivated constituents that play essentially
no role in semantic processing.

• The general nature of many syntactic constituents results in semantic attachments that
create nearly vacuous meaning representations.
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The branching structure of this tree distributes the key components of the meaning representa-
tions widely throughout the tree. At the same time, most of the nodes in the tree contribute al-
most nothing to the meaning of this sentence. This structure requires three lambdas-expressions
and a complex term to bring the few contentful elements together at the top of the tree.

Semantic grammars can overcome these problems. In this approach, the rules and con-
stituents of the grammar are designed to correspond directly to entities and relations from the
domain being discussed. More specifically, such grammars are constructed so that key semantic
components can occur together within single rules, and rules are made no more general than is
needed to achieve sensible semantic analyses.

InfoRequest → User want to go to eat FoodType TimeExpr FoodType → Nationality FoodType

One of the key motivations for the use of semantic grammars in these domains was the need
to deal with various kinds of anaphor and ellipsis. Semantic grammars can help with these
phenomena since by their nature they enable certain amount of prediction. For example:

When does flight 573 arrive in Atlanta? When does it arrive in Dallas?

Sentences like these can be analyzed with a rule like the following, which makes use of the
domain specific non-terminals Flight and City :

InfoRequest → when does Flight arrive in City

A rule such as this gives far more information about the likely referent of the it than a purely
syntactic rule that would simply restrict it to anything expressible as a noun phrase.

Of course, as one can imagine, the main drawback of semantic grammars is the almost complete
lack of reuse, due to the fact that as we said it is domain-specific.

10.3 Information Extraction

This section presents techniques for extracting limited kinds of semantic content from text.
This process of information extraction (IE), turns the unstructured information embedded
in texts into structured data, for example for populating a relational database to enable further
processing.

10.3.1 Named Entity Recognition (NER)

The first step in information extraction is to detect the entities in the text. A named entity is,
roughly speaking, anything that can be referred to with a proper name: a person, a location,
an organization. The term is commonly extended to include things that aren’t entities per se,
including dates, times, and other kinds of temporal expressions, and even numerical expressions
like prices.
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Recognition is difficult partly because of the ambiguity of segmentation; we need to decide
what’s an entity and what isn’t, and where the boundaries are. Another difficulty is caused by
type ambiguity.

The standard algorithm for named entity recognition is as a word-by-word sequence labeling
task, in which the assigned tags capture both the boundary and the type. A sequence classifier
like an MEMM/CRF or a bi-LSTM is trained to label the tokens in a text with tags that
indicate the presence of particular kinds of named entities.

In IOB tagging we introduce a tag for the beginning (B) and inside (I) of each entity type,
and one for tokens outside (O) any entity. The number of tags is thus 2n + 1 tags, where n
is the number of entity types. IOB tagging can represent exactly the same information as the
bracketed notation.

We’ve also shown IO tagging, which loses some information by eliminating the B tag. Without
the B tag IO tagging is unable to distinguish between two entities of the same type that are
right next to each other. Since this situation doesn’t arise very often (usually there is at least
some punctuation or other deliminator), IO tagging may be sufficient, and has the advantage
of using only n+ 1 tags.

10.3.2 Relation Extraction

Next on our list of tasks is to discern the relationships that exist among the detected entities.
Considering the same example as before, the text tells us, for example, that Tim Wagner is a
spokesman for American Airlines, that United is a unit of UAL Corp., and that American is a
unit of AMR. These binary relations are instances of more generic relations such as part-of or
employs.
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Supervised Machine Learning

One common approach to solve this task is supervised machine learning, whose scheme
should be familiar by now. A fixed set of relations and entities is chosen, a training corpus is
hand-annotated with the relations and entities, and the annotated texts are then used to train
classifiers to annotate an unseen test set.

Step one is to find pairs of named entities (usually in the same sentence). In step two, a filtering
classifier is trained to make a binary decision as to whether a given pair of named entities are
related (by any relation). Positive examples are extracted directly from all relations in the
annotated corpus, and negative examples are generated from within-sentence entity pairs that
are not annotated with a relation. In step 3, a classifier is trained to assign a label to the
relations that were found by step 2. The use of the filtering classifier can speed up the final
classification and also allows the use of distinct feature-sets appropriate for each task. For each
of the two classifiers, we can use any of the standard classification techniques (logistic regression,
neural network, SVM, etc.).

In general, if the test set is similar enough to the training set, and if there is enough hand-
labeled data, supervised relation extraction systems can get high accuracies. But labeling a
large training set is extremely expensive and supervised models are brittle: they don’t generalize
well to different text genres. For this reason, much research in relation extraction has focused
on the semi-supervised and unsupervised approaches.

Semisupervised Relation Extraction via Bootstrapping

Supervised machine learning assumes that we have lots of labeled data. Unfortunately, this is
expensive. But suppose we just have a few high-precision seed patterns. That’s enough to
bootstrap a classifier! Bootstrapping proceeds by taking the entities in the seed pair, and then
finding sentences (on the web, or whatever dataset we are using) that contain both entities.
From all such sentences, we extract and generalize the context around the entities to learn new
patterns.

Suppose, for example, that we need to create a list of airline/hub pairs, and we know only that
Ryanair has a hub at Charleroi. We can use this seed fact to discover new patterns by finding
other mentions of this relation in our corpus. We search for the terms Ryanair, Charleroi and
hub in some proximity. Perhaps we find the following set of sentences:

• Budget airline Ryanair, which uses Charleroi as a hub, scrapped all weekend flights out
of the airport.

• All flights in and out of Ryanair’s Belgian hub at Charleroi airport were grounded on
Friday...

• A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000 passengers had
already been affected.

From these results, we can use the context of words between the entity mentions, the words
before mention one, the word after mention two, and the named entity types of the two mentions,
and perhaps other features, to extract general patterns, which can then be used to search for
additional tuples.

Bootstrapping systems also assign confidence values to new tuples to avoid semantic drift.
In semantic drift, an erroneous pattern leads to the introduction of erroneous tuples, which, in
turn, lead to the creation of problematic patterns and the meaning of the extracted relations
‘drifts’.
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Distant Supervision for Relation Extraction

The distant distant supervision method of Mintz et al. (2009) combines the advantages of
bootstrapping supervision with supervised learning. Instead of just a handful of seeds, distant
supervision uses a large database to acquire a huge number of seed examples, creates lots of
noisy pattern features from all these examples and then combines them in a supervised classifier.
For example suppose we are trying to learn the place-of-birth relationship between people and
their birth cities. In the seed-based approach, we might have only 5 examples to start with.
But Wikipedia-based databases like DBPedia or Freebase have tens of thousands of examples of
many relations. The next step is to run named entity taggers on large amounts of text (Mintz
et al. (2009) used 800,000 articles from Wikipedia) and extract all sentences that have two
named entities that match the tuple, like the following:

...Hubble was born in Marshfield...

...Einstein, born (1879), Ulm...

...Hubble’s birthplace in Marshfield...

Training instances can now be extracted from this data, one training instance for each identical
tuple <relation, entity1, entity2>. Thus there will be one training instance for each of:

<born-in, Edwin Hubble, Marshfield>
<born-in, Albert Einstein, Ulm>
<born-year, Albert Einstein, 1879>

and so on. We can then apply feature-based or neural classification.

Unsupervised Relation Extraction

The goal of unsupervised relation extraction is to extract relations from the web when we
have no labeled training data, and not even any list of relations. This task is often called
open information extraction or Open IE. In Open IE, the relations are simply strings of words
(usually beginning with a verb).

For example, the ReVerb system (Fader et al., 2011) extracts a relation from a sentence s
in 4 steps:

• Run a part-of-speech tagger and entity chunker over s.

• For each verb in s, find the longest sequence of words w that start with a verb and satisfy
syntactic and lexical constraints, merging adjacent matches.

• For each phrase w, find the nearest noun phrase x to the left which is not a relative
pronoun, wh-word or existential “there”. Find the nearest noun phrase y to the right.

• Assign confidence c to the relation r = (x,w, y) using a confidence classifier and return it.

More details can be found in the book.

The great advantage of unsupervised relation extraction is its ability to handle a huge number
of relations without having to specify them in advance. The disadvantage is the need to map
these large sets of strings into some canonical form for adding to databases or other knowledge
sources. Current methods focus heavily on relations expressed with verbs, and so will miss
many relations that are expressed nominally.
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10.3.3 Temporal Expression Extraction

Times and dates are a particularly important kind of named entity that play a role in question
answering, in calendar and personal assistant applications. In order to reason about times and
dates, after we extract these temporal expressions they must be normalized, i.e. converted
to a standard format so we can reason about them.

The temporal expression recognition task consists of finding the start and end of all of the text
spans that correspond to such temporal expressions.

Rule-based approaches to temporal expression recognition use cascades of automata to rec-
ognize patterns at increasing levels of complexity. Tokens are first part-of-speech tagged, and
then larger and larger chunks are recognized from the results from previous stages, based on
patterns containing trigger words (e.g., February) or classes (e.g., MONTH).

Sequence-labeling approaches follow the same IOB scheme used for named-entity tags,
marking words that are either inside, outside or at the beginning of a TIMEX3-delimited tem-
poral expression with the I, O, and B tags.

10.3.4 Extracting Events

The task of event extraction is to identify mentions of events in texts. For the purposes of
this task, an event mention is any expression denoting an event or state that can be assigned
to a particular point, or interval, in time.

Event extraction is generally modeled via supervised learning, detecting events via sequence
models with IOB tagging, and assigning event classes and attributes with multi-class classifiers.
Common features include surface information like parts of speech, lexical items, and verb tense
information.

10.3.5 Template Filling

Many texts contain reports of events, and possibly sequences of events, that often correspond to
fairly common, stereotypical situations in the world. These abstract situations can be character-
ized as scripts. In their simplest form, such scripts can be represented as templates consisting
of fixed sets of slots that take as values slot-fillers belonging to particular classes. The task of
template filling is to find documents that invoke particular scripts and then fill the slots in
the associated templates with fillers extracted from the text. These slot-fillers may consist of
text segments extracted directly from the text, or they may consist of concepts that have been
inferred from text elements through some additional processing.

A filled template from our original airline story might look like the following:

The task is generally modeled by training two separate supervised systems. The first system
decides whether the template is present in a particular sentence. This template task is called
template recognition. The second system has the job of role-filler extraction. A separate

57



classifier is trained to detect each role (LEAD-AIRLINE, AMOUNT, and so on). This can be
a binary classifier that is run on every noun-phrase in the parsed input sentence, or a sequence
model run over sequences of words.

10.4 Lexical Semantics

In the previous sections we made minimal use of the notion of the meaning of a word, due
to a general approach motivated by the view that while words may contribute content to the
meanings of sentences, they do not themselves have meanings, i.e. they do not refer to the
world, can not be judged to be true or false etc. Now, instead, we will see that the lexicon has
a highly systematic structure that governs what words can mean and how they can be used.
The study of this systematic, meaning related, structure is called Lexical Semantics.

We will focus on the notion of lexeme, the smallest unit with orthographic form, phonological
form and meaning.

Relations among lexemes:

• Homonymy: different lexemes with the same form but with unrelated meanings;

– Homographs: lexemes with the same orthographic form

– Homophones: lexemes with the same phonological form

– Perfect homonym: homograph + homophone

• Polysemy: a single lexeme with multiple related meanings;

– Metaphor: constructs an analogy between two things or ideas, the analogy is con-
veyed by the use of a metaphorical word in place of some other word

– Metonymy: a concept is denoted by naming some other concept closely related to it

• Synonymy: different lexemes with the same meaning; two lexemes are considered syn-
onyms if they can be substituted for one another in sentences without changing the mean-
ing of the sentence (substitutability). Perfect synonyms are rare.

• Antonymy: different lexemes with opposite (but related) sense;

• Hypernymy: an hypernym lexeme denotes a superclass of another lexeme;

• Hyponymy: an hyponym lexeme denotes a subclass of another lexeme;

• Meronymy: a meronym lexeme denotes a constituent part of, or a member of another
lexeme;

• Holonymy: an holonym lexeme denotes the whole of a lexeme that denotes a part of it.

Note that these relations are important, since they affect most of the NLP tasks. For exam-
ple, Text-To-Speech is affected by homographs with different phonological form; Information
Retrieval is affected by homographs; Spelling Correction is affected by homophones; Speech
Recognition is affected by homophones and perfect homonyms.
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10.4.1 Lexical Databases

The widespread use of lexical relations in linguistic, psycho-linguistic and computational re-
search has led to a number of efforts to create large electronic databases of such relations.
These efforts have, in general, followed one of two basic approaches: mining information from
existing dictionaries and thesauri, and handcrafting a database from scratch. Despite the obvi-
ous advantage of reusing existing resources, WordNet, one of the most well-developed lexical
database for English, was developed using the latter approach.

Link to the WordNet website: https: // wordnet. princeton. edu/

WordNet consists of three separate databases, one each for nouns and verbs, and a third for
adjectives and adverbs. Of course, a simple listing of lexical entries would not be much more
useful that an ordinary dictionary. The power of WordNet lies in its set of domain-independent
lexical relations. These relations can hold among WordNet entries, senses, or sets of synonyms.

Synonyms are indeed one of the most well-developed features of WordNet. They are organized
in synsets:

• A synset contains synonym lexemes

• A synset carries a specific sense, a meaning

• A synset has a gloss, explaining the carried meaning

• A lexeme can appear in several synset

Moreover, each synset is related to its immediately more general and more specific synsets via
direct hypernym and hyponym relations.

59

https://wordnet.princeton.edu/


10.4.2 The Internal Structure of Words

Thematic Roles

Thematic roles are a set of categories which provide a shallow semantic language for character-
izing certain arguments of verbs.

Houston’s Billy Hatcher broke a bat.
He opened a drawer.

In the predicate calculus event representation seen previously, part of the representation of these
two sentences would be the following:

∃e, x, y Isa(e,Breaking)∧Breaker(e,BillyHatcher)∧BrokenThing(e, y)∧Isa(y,BaseballBat)

∃e, x, y Isa(e,Opening) ∧Opener(e, he) ∧OpenedThing(e, y) ∧ Isa(y,Door)

In this representation, the roles of the subjects of the verbs break and open are Breaker and
Opener respectively. These deep roles are specific to each possible kind of event. Breaking
events have Breakers, Opening events have Openers etc. But Breakers and Openers have
something in common. They are both volitional actors, often animate, and they have direct
causal responsibility for their events. A thematic role is a way of expressing this commonality.
We say that the subjects of both these verbs are AGENTS. Similar, the direct objects of both
these verbs, the BrokenThing and OpenedThing, are THEME.

Linking Theory

One common use of thematic roles in computational systems is as a shallow semantic language.
For example, they are sometimes used in machine translation systems as part of a useful inter-
mediate language. Another use of thematic roles was as an intermediary between semantic roles
in conceptual structure or common-sense knowledge and their more language-specific surface
grammatical realization as subject or object:

AGENT → INSTRUMENT → THEME

Thus if the thematic description of a verb includes an AGENT, an INSTRUMENT and a
THEME, it is the AGENT which will be realized as the subject.

FrameNet
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A FrameNet entry for a word lists every set of arguments it can take, including the possible sets
of thematic roles, syntactic phrases and their grammatical function. The thematic roles used in
FrameNet are much more specific than the ones we’ve seen till now. Each FrameNet thematic
role is defined as part of a frame, and each frame as part of a domain. For example, one domain
is the Cognition domain. All the cognition frames define the thematic role COGNIZER. In
the judgement frame, the COGNIZER is referred to as the JUDGE; the frame also includes
an EVALUEE, a REASON, and a ROLE.

The problem with a scheme like FrameNet is the extensive human effort it requires in defining
thematic roles for each domain and each frame.

Selectional Restrictions

The notion of a selectional restriction can be used to augment thematic roles by allowing
lexemes to place certain semantic restrictions on the lexemes and phrases that can accompany
them in a sentence.

I wanna eat someplace that’s close to Politecnico.

There are two possible parses for this sentence corresponding to the intransitive and transitive
versions of the verb eat. These two parses lead, in turn, to two distinct semantic analyses. The
sentence is semantically ill-formed, since the THEME in the sentence, corresponding to some-
place cannot easily be interpreted as edible. Thus we have a selection restriction violation,
i.e. a situation where the semantics of the filler of a thematic role is not consistent with a
constraint imposed on the role by the predicate.

In order to represent selection restrictions we can extend the event-oriented meaning represen-
tations often used.

∃e, x, y Eating(e) ∧Agent(e, x) ∧ Patient(e, y)

becomes

∃e, x, y Eating(e) ∧ Eater(e, x) ∧ Patient(e, y) ∧ Isa(y,EdibleThing)

While this approach adequately captures the semantics of selectional restrictions, there are two
practical problem with its direct use. First, using the full power of FOL to perform the simple
task of enforcing selection restrictions is overkill. There are far simpler formalism that can do
the job with far less computational cost. The second problem is that it presupposes a large
logical knowledge-base of facts about the concepts that make up selection restrictions.

A far more practical approach is to exploit the hyponymy relations present in the WordNet
database. A given meaning representation can be judged to be well-formed if the lexeme that
fills a thematic role has as one of its hypernyms the synset specified by the predicate for that
thematic role.

61



10.4.3 Word Sense Disambiguation (WSD)

The task of selecting the correct sense for a word is called word sense disambiguation,
or WSD. WSD algorithms take as input a word in context and a fixed inventory of potential
word senses and outputs the correct word sense in context. The input and the senses depends
on the task. For machine translation from English to Spanish, the sense tag inventory for an
English word might be the set of different Spanish translations. For automatic indexing of
medical articles, the sense-tag inventory might be the set of MeSH (Medical Subject Headings)
thesaurus entries.

Supervised Word Sense Disambiguation is commonly used whenever we have sufficient
data that has been hand-labeled with correct word senses.
Supervised WSD algorithms can use any standard classification algorithm. Features generally
include the word identity, part-of-speech tags, and embeddings of surrounding words, usually
computed in two ways: collocation features are words or n-grams at a particular location, (i.e.,
exactly one word to the right, or the two words starting 3 words to the left, and so on). bag
of word features are represented as a vector with the dimensionality of the vocabulary (minus
stop words), with a 1 if that word occurs in the neighborhood of the target word.

An electric guitar and bass player stand off to one side.

If we use a small 2-word window, a standard feature vector might include a bag of words,
parts-of-speech, unigram and bigram collocation features, and embeddings, that is:

[wi−2, POSi−2, wi−1, POSi−1, wi+1, POSi+1, wi+2, POSi+2,

wi−1
i−2, w

i+2
i+1, E(wi−2, wi−1, wi+1, wi+2), bag()]

would yield the following vector:

[guitar,NN, and,CC, player,NN, stand, V B, andguitar, playerstand,

E(guitar, and, player, stand), bag(guitar, player, stand)]

Supervised algorithms based on sense-labeled corpora are the best-performing algorithms for
sense disambiguation. However, such labeled training data is expensive and limited. One
alternative is to get indirect supervision from dictionaries and thesauruses, and so this method
is also called knowledge-based WSD. Methods like this that do not use texts that have been
hand-labeled with senses are also called weakly supervised.

The most well-studied dictionary-based algorithm for sense disambiguation is the Lesk algo-
rithm, really a family of algorithms that choose the sense whose dictionary gloss or definition
shares the most words with the target word’s neighborhood.

Example:

The bank can guarantee deposits will eventually cover future tuition costs because it invests in
adjustable-rate mortgage securities.

given the following two WordNet senses:
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Sense bank1 has two non-stopwords overlapping with the context in our sentence: deposits and
mortgage, while sense bank2 has zero words, so sense bank1 is chosen.

There are many obvious extensions to Simplified Lesk. The best solution, if any sense-tagged
corpus data like SemCor is available, is to add all the words in the labeled corpus sentences for
a word sense into the signature for that sense. This version of the algorithm, the Corpus Lesk
algorithm, is the best-performing of all the Lesk variants.
Instead of just counting up the overlapping words, the Corpus Lesk algorithm also applies a
weight to each overlapping word. The weight is the inverse document frequency or IDF.
IDF measures how many different “documents” (in this case, glosses and examples) a word
occurs in and is thus a way of discounting function words. Since function words like the, of,
etc., occur in many documents, their IDF is very low, while the IDF of content words is high.
Corpus Lesk thus uses IDF instead of a stop list.

Formally, the IDF for a word i can be defined as

idfi = log
(Ndoc

ndi

)
where Ndoc is the total number of “documents” (glosses and examples) and ndi the number of
these documents containing word i.

Also in this case, as seen in 10.3.2, we can use bootstrapping and unsupervised methods to
solve the WSD task.

11 Summarization

Summarization is the process of distilling the most important information from a text to produce
an abridged version for a particular task and user.

There exist different kinds of summaries:

• Outlines
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• Abstract

• Headlines

• Snippets (summarizing a web page on a search engine’s result page)

• Action Items or other summaries (of spoken business meetings)

• Summaries of emails

• Compressed Sentences

• Answers to complex questions

More in general, we can identify the following classes:

• Single-document vs Multiple-document summarization

• Generic vs Query-focused summarization

• Abstractive vs Extractive summarization

11.1 Single document (generic, extractive)

1) Content Selection: choose pieces of text to extract from the document (granularity, usually
sentences or clauses).

2) Information Ordering: choose the order of the extracted units (usually easily solved by
keeping the appearance order).

3) Sentence Realization: clean up the extracted units so that they are fluent in their new
context.

11.1.1 Content selection

It is a classification task, since we want to put each sentence into the important or unimportant
classes. There are many methods with which one can solve this task:

• Unsupervised Content Selection

• Unsupervised Summarization based on Rhetorical Parsing

• Supervised Content Selection

Unsupervised Content Selection

The content selection task is treated as a clusterization task. The salience (i.e. informativeness)
of words is computed and only the sentences with the highest number of salient words are
selected.
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Before going on, let’s make a digression. When we’re dealing with this kind of problems,
documents are usually represented as vectors composed of weights.

~dj = (w1,j , w2,j , w3,j , ..., wM,j)

~dk = (w1,k, w2,k, w3,k, ..., wM,k)

Thus a documents collection can be represented as a M ×N matrix A = [wi,j ], where N is the
number of documents in the collection and M the number of unique terms (word types or word
forms).

With that said, one way to compute the salience of words is the TF-IDF model. TF-IDF,
short for term frequency–inverse document frequency, is a numerical statistic that is intended
to reflect how important a word is to a document in a collection or corpus. The TF-IDF value
increases proportionally to the number of times a word appears in the document and it is offset
by the number of documents in the corpus that contain the word, which helps to adjust for the
fact that some words appear more frequently in general. TF-IDF is one of the most popular
term-weighting schemes today; 83% of text-based recommender systems in digital libraries use
TF-IDF.

The TF-IDF is the product of two statistics, term frequency and inverse document frequency :

Term frequency:

tfi,j = (# occurrences of the term ti in doc. dj) / (# terms in doc. dj)

Inverse document frequency:

idfi = log(N/(# docs containing ti))

Weights:

wi,j = tfi,j · idfi

If a term (a word type or a word form) ti is dense in a given document dj , but rare in the
collection, it is highly relevant for dj .

At the end, the weight of a sentence sk in the document j is the average weight of its non-stop
words:

weightj(sk) =
∑

wi∈nonstop(sk)

weight(wi)

|nonstop(sk)|

Example:

Suppose that we have term count tables of a corpus consisting of only two documents, as listed
below.

tf(“this”, d1) =
1

5
= 0.2

tf(“this”, d2) =
1

7
≈ 0.14

An idf is constant per corpus, and accounts for the ratio of documents that include the word
”this”. In this case, we have a corpus of two documents and all of them include the word ”this”.
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idf(“this”, D) = log(
2

2
) = 0

So tf–idf is zero for the word “this”, which implies that the word is not very informative as it
appears in all documents.

Let’s now analyze another approach, which is centroid based. The method is the log likeli-
hood ratio.

Disclaimer: this is the reference from which I took the part related to the log
likelihood ratio, since not completely explained in the slides: https://www.cs.bgu.

ac.il/~elhadad/nlp16/nenkova-mckeown.pdf

Its goal is to find the signature words types, i.e. the words that “characterize” the document.
The decision is made based on a test for statistical significance, hence information about the
frequency of occurrence of words in a large background corpus is necessary to compute the
statistic on the basis of which topic signature words are determined. The likelihood of the input
I and the background corpus is computed under two assumptions:
(H1) that the probability of a word in the input is the same as in the background B or (H2)
that the word has a different, higher probability, in the input than in the background.

H1 : P (w|I) = P (w|B) = p w is not descriptive

H2 : P (w|I) = pI and P (w|B) = pB and pI > pB w is descriptive

The likelihood of a text with respect to a given word of interest, w, is computed via the binomial
distribution formula. The input and the background corpus are treated as a sequence of words
wi : w1w2...wN . The occurrence of each word is a Bernoulli trial with probability p of success,
which occurs when wi = w.

The overall probability of observing the word w appearing k times in the N trials is given by
the binomial distribution

b(k,N, p) =

(
N

k

)
pk(1− p)N−k

For H1, the probability p is computed from the input and the background collection taken
together. For H2, p1 is computed from the input, p2 from the background, and the likelihood of
the entire data is equal to the product of the binomial for the input and that for the background.
More specifically, the likelihood ratio is defined as
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λ =
b(k,N, p)

b(kI , NI , pI) · b(kB, NB, pB)

The statistic equal to −2logλ has a known statistical distribution (χ2), which can be used to
determine which words are topic signatures.

Topic signature words are those that have a likelihood statistic greater than what one would
expect by chance. The probability of obtaining a given value of the statistic purely by chance
can be looked up in a χ2 distribution table; for instance a value of 10.83 can be obtained by
chance with probability of 0.001.

The importance of a sentence is computed as the number of topic signatures it contains or as
the proportion of topic signatures in the sentence.

The last approach we will mention is the centrality based approach. Centrality-based meth-
ods compute distances between each candidate sentence and each other sentence, of the current
document. In order to compute centrality, sentences are represented as a bag-of-words vector
and each sentence s of the document is then assigned a centrality score:

centrality(s) =
1

K

∑
y

tf -idf -cosine(s, y)

Unsupervised Summarization based on Rethorical Parsing

“Discourse structure theories involve understanding the part-whole nature of textual documents.
The task of rhetorical parsing, for example, involves understanding how two text spans are
related to each other in the context. The theoretical foundation is rhetorical structure theory
(RST) Mann and Thompson (1988), which a comprehensive theory of discourse organization.
RST investigates how clauses, sentences and even larger text spans connect together into a
whole. RST assumes that discourse is not merely a collection of random utterances but the
discourse units connect to each other as a whole in a logical and topological way.” (reference
here).

We will see more on this in the section about Discourse.

Supervised Content Selection

Weighting words is only a single cue for finding extract-worthy sentences. Many other cues
exist:
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• position of the sentence: sentences at the very beginning or end of the document tend to
be more important

• the length of each sentence

• and so on...

We’d like a model able to weigh and also to take into consideration also these clues. Thus we
need a supervised model, whose goal is to classify each sample as extract-worthy or not, and
a training set of documents paired with human-created summary extracts. A set of features is
computed for the sentence to classify, and then models like Naive Bayes or MaxEnt can classify
the sentence.

When we write summaries, however, we do not want to use only sentences extracted from
the document. We would like to combine these sentences, change some words or even write
completely new abstractive sentences. That’s why, in order to generalize the corpus, let us
ensure that it does not hold that each sentence in the summary is taken from the document.
Although, now we need to align each document’s sentence with its summary sentence(s). There
are different possible algorithms to do that:

• align document and abstract sentences with the longest common subsequences of non-
stopwords

• edit distance

• WordNet-based distance

11.1.2 Sentence Realization: sentence simplification

In the last step of our pipeline, we perform Sentence Realization, i.e. we apply some rules to
select parts of the sentence to prune or keep. This is often done by running a parser/chunker
over the sentences.

11.2 Multiple document (generic, extractive)

As we can see from the pipeline, it is quite similar to the single-document we have seen so far.
One important difference is that in the multi-document summarization there is a great amount
of redundancy. Since the summary should not contain redundancy:

• Algorithms for multi-document summarization focus on ways to avoid redundancy

• When adding a new sentence to the summary, be sure that it does not overlap too much
with sentences already in the summary
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• Redundancy factor: similarity between a candidate sentence and the sentences into the
summary. A sentence is penalized if it is too similar.

So how do we select a sentence?

Maximal Marginal Relevance (MMR)

MMR is a measure for quantifying the extend of dissimilarity between the item being considered
and those already selected. Higher MMR means the considered item is both relevant to the
query and contains minimal similarity to previous selected items.

MMR = arg max
Di∈R\S

[λ(Sim1(Di, Q)− (1− λ) ·maxDj∈SSim2(Di, Dj))]

where C is a document collection; Q is a query; R = IR(C,Q, θ), i.e. the ranked list of
documents retrieved by an IR system, given C, Q and a relevance threshold θ; S is the subset
of documents in R already selected.

Given the above definition, MMR computes incrementally the standard relevance-ranked list
when the parameter λ = 1 and computes a maximal diversity ranking among the documents in
R when λ = 0. For intermediate values of λ in the interval [0, 1] a linear combination of both
criteria is optimized.

Click on the link below to see the paper:
The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Sum-
maries

Clustering

This is a the standard clustering technique, applied to all the sentences in the documents to
be summarized, producing a number of clusters of related sentences. We then select a single
(centroid) sentence from each cluster into the summary.

11.2.1 Information Ordering in Multi-Document Summarization

To decide how to concatenate the extracted sentences into a coherent order there exist many
methods:

• Chronological ordering
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• Coherence

• Centering

Chronological ordering

This approach is used for sentences extracted from news stories, so that the associated dates can
be used. However, it turns out that pure chronological ordering can produce summaries which
lack cohesion (this problem can be addressed by ordering slightly larger chunks of sentences.

Coherence

In this approach we try to obtain coherence relations between the sentences. A coherence
discourse is one in which entities are mentioned in coherent patterns.
Lexical cohesion can be used as an ordering heuristic: we use the standard TF-IDF cosine
distance between each pair of sentences and then we choose the overall ordering that minimizes
the average distance between neighbouring sentences.

Centering

This approach is based on the fact that each discourse segment has a salient entity: the focus.
A discourse is said to be coherent if the focus appears as certain syntactic realizations (i.e.
as subject or object) and if the focus appears in certain transitions between these realizations
(e.g. if the same entity is the subject of adjacent sentences). We prefer orderings in which the
transition between entity mentions is a preferred one.

For example, the transitions X,O,S,S for the entity Microsoft say that “Microsoft” in a discourse
is introduced first in oblique or object position and then only later appears in subject position.

11.2.2 Selection and Ordering together: HMM

So far we have treated information extraction and ordering as separated processes. With HMMs
we can instead model the problem in such a way that these two tasks are performed together.

• clusterize sentences

• each cluster c is an (unnamed) topic: hidden state

• observations correspond to sentences s

• HMM transition probability distribution:
P (cj |ci) = Cdoc(sent(ci)→ sent(cj))/Cdoc(ci)

• HMM emission probability distribution: P (s|c)

The HMM P (cj |ci) implicitly represents information-ordering facts:

• P (cj |ci) is high if often sentences in ci precedes sentences in cj ; in other words: ci is
“before” cj
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• select the ordering, among all the candidates, that the HMM assigns the highest proba-
bility to

The ordering chosen for the extracted sentences may not respect coherence rules. For this
reason a coreference resolution algorithm must be applied to the output, extracting names and
applying cleanup rewrite rules, e.g.:

• use the full name at the first mention, and just the last name at subsequent mentions
(U.S. President George W. Bush and then Bush)

• use a modified form for the first mention, but remove appositives or premodifiers from
any subsequent mentions

• many more...

11.3 Focused Summarization

Summarization techniques are often used to build answers to complex questions. Two methods
that can be used in this task are the following:

• Slightly modify the algorithms for multiple-document summarization to make use of the
query, i.e. extracting sentences containing at least one word overlapping with the query

• Use Information Extraction methods

11.3.1 IR-based Factoid Question Answering

Information-retrieval or IR-based question answering relies on the vast quantities of textual
information on the web or in collections like PubMed. Given a user question, information
retrieval techniques first find relevant documents and passages. Then systems (feature-based,
neural, or both) use reading comprehension algorithms to read these retrieved documents or
passages and draw an answer directly from spans of text.
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Question Processing

The main goal of the question-processing phase is to extract the query: the keywords passed
to the IR system to match potential documents. For example, for the question Which US state
capital has the largest population? the query processing might produce:

query: “US state capital has the largest population”
answer type: city
focus: state capital

Query formulation is the task of creating a query—a list of tokens— to send to an information
retrieval system to retrieve documents that might contain answer strings. For question answer-
ing from the web, we can simply pass the entire question to the web search engine, at most
perhaps leaving out the question word (where, when, etc.). For question answering from smaller
sets of documents like corporate information pages or Wikipedia, we still use an IR engine to
index and search our documents, generally using standard tf-idf cosine matching, but we might
need to do more processing. For example, for searching Wikipedia, it helps to compute tf-idf
over bigrams rather than unigrams in the query and document (Chen et al., 2017). Or we might
need to do query expansion, since while on the web the answer to a question might appear in
many different forms, one of which will probably match the question, in smaller document sets
an answer might appear only once. Query expansion methods can add query terms in hopes of
matching the particular form of the answer as it appears, like adding morphological variants of
the content words in the question, or synonyms from a thesaurus.

Some systems make use of question classification, the task of finding the answer type, the
named-entity categorizing the answer. A question like “Who founded Virgin Airlines?” expects
an answer of type PERSON. If we know that the answer type for a question is a person, we
can avoid examining every sentence in the document collection, instead focusing on sentences
mentioning people.
We can also use a larger hierarchical set of answer types called an answer type taxonomy.
Such taxonomies can be built automatically, from resources like WordNet, or they can be
designed by hand. Most question classifiers, however, are based on supervised learning, trained
on databases of questions that have been hand-labeled with an answer type.

Document and Passage Retrieval

The IR query produced from the question processing stage is sent to an IR engine, resulting
in a set of documents ranked by their relevance to the query. Because most answer-extraction
methods are designed to apply to smaller regions such as passages paragraphs, QA systems next
divide the top n documents into smaller passages such as sections, paragraphs, or sentences.
These might be already segmented in the source document or we might need to run a paragraph
segmentation algorithm. The simplest form of passage retrieval is then to simply pass along
every passages to the answer extraction stage. A more sophisticated variant is to filter the
passages by running a named entity or answer type classification on the retrieved passages.
Passages that don’t contain the answer type that was assigned to the question are discarded.

Answer Extraction

The final stage of question answering is to extract a specific answer from the passage, for example
responding 29,029 feet to a question like “How tall is Mt. Everest?”. This task is commonly
modeled by span labeling: given a passage, identifying the span of text which constitutes an
answer.

A simple baseline algorithm for answer extraction is to run a named entity tagger on the
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candidate passage and return whatever span in the passage is the correct answer type.
Unfortunately, the answers to many questions, such as DEFINITION questions, don’t tend to
be of a particular named entity type. For this reason modern work on answer extraction uses
more sophisticated algorithms, generally based on supervised learning.

I will not cover such methods. Check them on the book if you are curious.

11.3.2 Evaluation of Factoid Answers

A common evaluation metric for factoid question answering, introduced in the TREC Q/A track
in 1999, is mean reciprocal rank, or MRR. MRR assumes a test set of questions that have been
human-labeled with correct answers. MRR also assumes that systems are returning a short
ranked list of answers or passages containing answers. Each question is then scored according
to the reciprocal of the rank of the first correct answer.

MRR =
1

N

∑
i=1 s.t. ranki 6=0

1

ranki

where N is the number of questions of the test set.

For example, suppose we have the following three sample queries for a system that tries to
translate English words to their plurals. In each case, the system makes three guesses, with the
first one being the one it thinks is most likely correct:

Given those three samples, we could calculate the mean reciprocal rank as (1/3 + 1/2 + 1)/3 =
11/18 or about 0.61.

If none of the proposed results are correct, reciprocal rank is 0. Please note that only the rank
of the first relevant answer is considered, possible further relevant answers are ignored. If users
are interested also in further relevant items, mean average precision is a potential alternative
metric.

11.3.3 Evaluation of Automatic Summarization

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It is essentially of a
set of metrics for evaluating automatic summarization of texts as well as machine translation.
It works by comparing an automatically produced summary or translation against a set of
reference summaries (typically human-produced).

System Summary (what the machine produced):

the cat was found under the bed

Reference Summary (gold standard – usually by humans):
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the cat was under the bed

ROUGE-2 refers to the overlap of bigrams between the system and reference summaries, hence:

ROUGE2recall =
4

5
= 0.8

ROUGE2precision =
4

6
= 0.67

Reference:
What is ROUGE and how it works for evaluation of summarization tasks?

Another method of evaluation is the Pyramid Method.

“The idea behind the Pyramid method is that the relevance of a unit of information can be
determined by how many reference summaries include it. The unit of information used by
the Pyramid method is the Summary Content Unit (SCU). An SCU is a semantically atomic
unit representing a single fact, but is not tied to its lexical realization; two paraphrases of the
same fact represent the same SCU despite being expressed differently. An SCU is assigned a
score proportional to the number of reference summaries that contain it. A Pyramid Score for
a summary is calculated by taking a normalized mean of the scores of the contained SCUs.
One advantage of Pyramid scores is that it directly assesses the identification of relevant facts,
while ignoring their lexical realization.” (http://www.cs.columbia.edu/~smaskey/papers/
pm_pyramid.pdf)

12 Coreference Resolution

Reference in a text to an entity that has been previously introduced into the discourse is called
anaphora.
Coreference resolution is the task of determining whether two mentions corefer, by which we
mean they refer to the same entity in the discourse model (the same discourse entity).

Coreference is an important component of natural language understanding. A dialogue system
that has just told the user “There is a 2pm flight on United and a 4pm one on Cathay Pacific”
must know which flight the user means by “I’ll take the Cathay Pacific flight”. A question
answering system that uses Wikipedia to answer a question about where Marie Curie was born
must know who she was in the sentence “She was born in Warsaw”. And a machine translation
system translating from a language like Spanish, in which pronouns can be dropped, must use
coreference from the previous sentence to decide whether the Spanish sentence ‘“Me incanta
el conocimiento”, dice.’ should be translated as ‘“I love knowledge”, he said’, or ‘“I love
knowledge”, she said’. Indeed, this example comes from an actual news article about a female
professor and was mistranslated as “he” by Google Translate because of inaccurate coreference
resolution (Schiebinger, 2019).

12.1 Types of Referring Expressions

• Indefinite Noun Phrases: the most common form of indefinite reference in English is
marked with the determiner a (or an), but it can also be marked by a quantifier such
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as some or even the determiner this. Indefinite reference generally introduces into the
discourse context entities that are new to the hearer.

• Definite Noun Phrases: definite reference, such as via NPs that use the English article
the, refers to an entity that is identifiable to the hearer, because already mentioned,
or because identifiable from beliefs, or because inherently unique.

• Pronouns: Emma smiled and chatted as cheerfully as she could.

• Demonstrative Pronouns: demonstrative pronouns this and that can appear either alone
or as determiners. Example: I just bought a copy of Thoreau’s Walden. I had bought one
five years ago. That one had been very tattered; this one was in much better condition.

• Zero Anaphora: instead of using a pronoun, in some languages (including Chinese, Japanese,
and Italian) it is possible to have an anaphor that has no lexical zero anaphor realization
at all:
[John]i went to visit some friends. On the way [he]i bought some wine.
[Giovanni]i ando a far visita a degli amici. Per via φi compro del vino.

• Inferrable: I almost bought an Acura Integra today, but the engine seemed noisy.

There are other types of referring expressions, thus we can understand that we are dealing with
a very complex problem. Moreover, there are cases in which noun phrases or other nominals
are not referring expressions, although they may bear a confusing superficial resemblance, thus
complicating this task even more.

Let’s focus on the Pronominal Reference resolution. Given a pronoun, we want to find
the reference. In order to address this problem it is useful to introduce some constraints, which
may help us both in designing novel features and performing error analyses.

12.2 Linguistic Properties of the Coreference Relation

12.2.1 Hard Constraints

• Number agreement: referring expressions and their referents must generally agree in num-
ber.

• Person agreement: English distinguishes between first, second, and third person, and
a pronoun’s. antecedent must agree with the pronoun in person. Thus a third person
pronoun must have a third person antecedent. However, phenomena like quotation can
cause exceptions.

• Gender agreement: in many languages, all nouns have grammatical gender or noun class
and pronouns generally agree with the grammatical gender of their antecedent.

• Binding Theory Constraints: The binding theory is a name for syntactic constraints on
the relations between a mention and an antecedent in the same sentence. Example:
Janet bought herself a bottle of fish sauce. [herself=Janet]
Janet bought her a bottle of fish sauce. [herself 6= Janet]
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12.2.2 Soft Constraints

• Recency: entities introduced in recent utterances tend to be more salient than those
introduced from utterances further back.

• Grammatical Role: entities mentioned in subject position are more salient than those in
object position, which are in turn more salient than those mentioned in oblique positions.

• Verb Semantics: Some verbs semantically emphasize one of their arguments, biasing the
interpretation of subsequent pronouns. Example:
John telephoned Bill. He lost the laptop.
John criticized Bill. He lost the laptop.

• Selectional Restrictions: many other kinds of semantic knowledge can play a role in refer-
ent preference. For example, the selectional restrictions that a verb places on its arguments
can help eliminate referents: I ate the soup in my new bowl after cooking it for hours.
There are two possible referents for it, the soup and the bowl. The verb eat, however,
requires that its direct object denote something edible, and this constraint can rule out
bowl as a possible referent.

12.3 Algorithms for Anaphora Resolution

• Knowledge-rich approach:

– Syntactic-based: Hobbs’ algorithm

– Discourse-based: Centering Theory

– Hybrid approaches: Lappin and Leas

– Corpus-based: Charniak, Hale and Ge

• Knowledge-poor approach:

– Machine Learning

Modern systems for coreference are based on supervised neural machine learning, supervised
from hand-labeled datasets like OntoNotes. However, we will describe the Lappin and Leas
algorithm. If you want to see the modern approaches, they are well defined on the
book (3.ed), section 22.4.

12.3.1 Lappin and Leas Algorithm (1994)

Original paper: https: // www. cis. upenn. edu/ ~ elenimi/ lappinleass1994. pdf

The problem can be defined in a pretty simple way: given he/she/it, assign antecedent. The
Lappin and Leass algorithm implements only recency and syntactic preferences and (oversim-
plifying) it can be splitted in two steps:

1) Discourse model update:
when a new noun phrase is encountered, add a representation to discourse model with a salience
value; then modify saliences.
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2) Pronoun resolution:
choose the most salient antecedent.

Salience weighting is accomplished using salience factors. A given salience factor is associated
with one or more discourse referents. These discourse referents are said to be in the factor’s
scope. A weight is associated with each factor, reflecting its relative contribution to the total
salience of individual discourse referents. Initial weights are degraded in the course of processing.
Degradation of salience factors occurs as the first step in processing a new sentence in the text.
All salience factors that have been assigned prior to the appearance of this sentence have their
weights degraded by a factor of two. When the weight of a given salience factor reaches zero,
the factor is removed.

Head noun emphasis: this factor increases the salience value of an NP that is not embedded
within another NP (as its complement or adjunct). Examples of NPs not receiving head noun
emphasis are:

1) “the configuration information copied by Backup configuration.”
2) “the assembly in bay C.”
3) “the owner’s manual for an Acura Integra is on John’s desk.”

Non-adverbial emphasis: any NP not contained in an adverbial PP demarcated by a sepa-
rator. Like head noun emphasis, this factor penalizes NPs in certain embedded constructions.
Examples of NPs not receiving non-adverbial emphasis are:

1) “Throughout the first section of this guide, these symbols are also used ... ”
2) “In the Panel definition panel, select the Specify option from the action bar.”

The algorithm performs the following operations:

• Collect the potential referents (up to 4 sentences back)

• Remove potential referents that do not agree in number or gender with the pronoun

• Remove potential references that do not pass syntactic coreference constraints

• Compute total salience value of referent from all factors, including, if applicable:

– role parallelism (+35)

– cataphora (-175)

• Select referent with highest salience value. In case of tie, select closest

Let’s make an example:

John saw a beautiful Acura Integra today at the dealership. He showed it to Bob. He bought it.
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Sentence 1 (John saw a beautiful Acura Integra today at the dealership):

Now we cut all values in half, obtaining {155, 140, 115} respectively.

Sentence 2 (He showed it to Bob.):

He specifies male gender, hence Step 2 reduces set of referents to only John. Now update the
discourse model: He in current sentence (recency=100), subject position (=80), not adverbial
(=50), not embedded (=80), so add 310:

Remaining on the sentence 2, we have to consider also it, which can be “Integra” or “dealership”.
Since it and Integra are objects (dealership is not), there is parallelism, hence +35 for “Integra”,
which grows to 175, while “dealership” remains at 115. Thus we pick “Integra” and the referent
for it is found. Update discourse model: it is object, it gets 100 + 50 + 50 + 80 = 280:

There is also Bob to consider: it is an oblique argument, its weight is 100 + 40 + 50 + 80 = 270:

Again, we cut all values in half, obtaining {232.5, 210, 135, 57.5} respectively.

Sentence 3 (He bought it.):

He2 will be resolved to John, and it2 to Integra.
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13 Discourse Coherence

As you know, language does not normally consist of isolated, unrelated sentences, but instead
of collocated, structured, coherent groups of sentences. We refer to such a coherent structured
group of sentences as a discourse, and we use the word coherence to refer to the relation-
ship between sentences that makes real discourses different than just random assemblages of
sentences.

What makes a discourse coherent?

1) First, sentences or clauses in real discourses are related to nearby sentences in systematic
ways. For example, the sequence John took a train from Paris to Istanbul. He likes spinach. is
incoherent, because it is unclear to a read why the second sentence follows the first. By contrast,
in the example Jane took a train from Paris to Istanbul. She had to attend a conference. the
second sentence gives a REASON for Jane’s action in the first sentence. Structured relationships
like REASON that hold between text units are called coherence relations.

2) A second way a discourse can be locally coherent is by virtue of being “about” someone
or something. In a coherent discourse some entities are salient, and the discourse focuses on
them and doesn’t go back and forth between multiple entities. This is called entity-based
coherence.

3) Finally, discourses can be locally coherent by being topically coherent: nearby topically
coherent sentences are generally about the same topic and use the same or similar vocabulary
to discuss these topics.

In addition to the local coherence between adjacent or nearby sentences, discourses also exhibit
global coherence. Many genres of text are associated with particular conventional discourse
structures. Academic articles might have sections describing the Methodology or Results. Sto-
ries might follow conventional plotlines or motifs.

13.1 Hobbs 1979 Coherence Relations

Result:
Infer that the state or event asserted by S0 causes or could cause the state or event asserted by
S1.

Explanation:
Infer that the state or event asserted by S1 causes or could cause the state or event asserted by
S0.

Parallel:
Infer proposition P (a1, a2, ...) from the assertion of S0 and P (b1, b2, ...) from the assertion of S1,
where ai and bi are similar, for all i.

Example:
(S0) John bought an Acura. → Possession(Person, Car) (S1) Bill leased a BMW. → Posses-
sion(Person, Car)

Elaboration:
Infer the same proposition P from the assertions of S0 and S1.
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Occasion:
A change of state can be inferred from the assertion of S0, whose final state can be inferred
from S1, or vice versa.

Example:
(S0) Dorothy picked up the oil-can.
and because of this, at the end
(S1) She oiled the Tin Woodman’s joints.

Let’s now do a complete example, taking into consideration the following text:

“John went to the bank to deposit his paycheck. (S1) He then took a train to Bill’s car
dealership. (S2) He needed to buy a car. (S3) The company he works for now isn’t near any
public transportation. (S4) He also wanted to talk to bill about their softball league. (S5)”

The discourse structure can be represented as:

13.2 Rhetorical Structure Theory

The most commonly used model of discourse organization is Rhetorical Structure Theory
(RST) (Mann and Thompson, 1987). In RST relations are defined between two spans of text,
generally a nucleus and a satellite. The nucleus is the unit that is more central to the writer’s
purpose and that is interpretable independently; the satellite is less central and generally is only
interpretable with respect to the nucleus. Some symmetric relations, however, hold between two
nuclei.

The following are some rhetorical relations:

• Reason: The nucleus is an action carried out by an animate agent and the satellite is the
reason for the nucleus.

• Elaboration: The satellite gives additional information or detail about the situation pre-
sented in the nucleus.

• Evidence: The satellite gives additional information or detail about the situation presented
in the nucleus. The information is presented with the goal of convince the reader to accept
the information presented in the nucleus.
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• Attribution: The satellite gives the source of attribution for an instance of reported speech
in the nucleus.

• List: In this multinuclear relation, a series of nuclei is given, without contrast or explicit
comparison.

RST relations are traditionally represented graphically; the asymmetric NucleusSatellite relation
is represented with an arrow from the satellite to the nucleus:

We can also talk about the coherence of a larger text by considering the hierarchical structure
between coherence relations.

“With its distant orbit–50 percent farther from the sun than Earth–and slim atmospheric blan-
ket, Mars experiences frigid weather conditions. Surface temperatures typically average about
-60 degrees Celsius (-76 degrees Fahrenheit) at the equator and can dip to -123 degrees C near
the poles. Only the midday sun at tropical latitudes is warm enough to thaw ice on occasion,
but any liquid water formed in this way would evaporate almost instantly because of the low
atmospheric pressure.”

13.2.1 Some Problems with RST

• How many rhetorical relations are there?

• How can we use RST in dialogue as well as monologue?

• RST does not model overall structure of the discourse.

• Difficult to get annotators to agree on labeling the same texts.
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14 Dialogue Systems

Language is the mark of humanity and sentience, and conversation or dialog is the most fun-
damental and specially privileged arena of language. This section introduces the fundamental
algorithms of conversational agents, or dialog systems. These programs communicate with users
in natural language (text, speech, or even both), and generally fall into two classes:

• Task-oriented dialog agents: designed for a particular task and set up to have short
conversations to get information from the user to help complete the task.

• Chatbots: systems designed for extended conversations, set up to mimic the unstructured
conversational or ‘chats’ characteristic of human-human interaction, rather than focused
on a particular task like booking plane flights.

14.1 What Makes Dialogue Different?

Dialogues exhibit anaphora and discourse structure and coherence, although with some slight
changes from monologue. For example, when resolving an anaphor in dialogue it’s important
to look at what the other speaker said, like in the following example:

A: There’s three non-stops today.
B: What are they?

where in order to realize that the pronoun they refers to non-stop flights it is required to look
at the previous utterance.

Dialogue does differ from written monologue in deeper ways, however. We will now highlight
some of these differences.

14.1.1 Turn-taking

One difference is the turn-taking. Speaker A says something, then speaker B, then speaker A,
and so on. How do speakers know when is the proper time to contribute their turn? A natural
conversation must be set up in a way that (most of the time) people can quickly figure out who
should talk next, and exactly when they should talk. This kind of turn-taking behaviour is
generally studied in the field of Conversation Analysis (CA). In a key conversation-analytic
paper, Sacks et. al. (1974) argued that turn-taking behaviour, at least in American English, is
governed by a set of turn-taking rules. Here is a simplified version of these rules:

Turn-taking Rule.

• a. If during this turn the current speaker has selected A as the next speaker then A must
speak next.

• b. If the current speaker does not select the next speaker, any other speaker may take the
next turn.

• c. If no one else takes the next turn, the current speaker may take the next turn.

These apparently simple rules have many implications, one of which is the interpretation of
silence: while silence can occur after any turn, silence which follows the first part of an adjacency
pair-part is significant silence.
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A: Is there something bothering you or not?
(1.0)
A: Yes or no?
(1.5)
A: Eh?
B: No.

In the above example, the silence is interpreted as a refusal to respond, or perhaps a dispreferred
response.

14.1.2 Grounding

Another important characteristic of dialogue that distinguishes it from monologue is that it is a
collective act performed by the speaker and the hearer. One implication of this collectiveness is
that the speaker and the hearer must constantly establish common ground (Stalnaker, 1978),
the set of things that are mutually believed by both speakers.

A: ...returning on US flight one one one eight.
C: Mm hmm

The word mm-hmm here is a continuer, also often called a backchannel or an acknowledge-
ment token. A continuer is a short utterance which acknowledges the previous utterance in
some way, often cueing the other speaker to continue talking.
Continuers are just one of the ways that the hearer can indicate that he/she believes he/she
understands what the speaker meant. Clark and Schaefer (1989) discuss five main types of
methods, ordered from weakest to strongest:

• Continued attention: B shows she is continuing to attend and therefore remains satisfied
with A’s presentation.

• Relevant next contribution: B starts in on the next relevant contribution.

• Acknowledgement: B nods or says a continuer like uh-huh, yeah, or the like, or an assess-
ment like that’s great.

• Demonstration: B demonstrates all or part of what she has understood A to mean, for
example by paraphrasing or reformulating A’s utterance, or by collaboratively completing
A’s utterance.

• Display: B displays verbatim all or part of A’s presentation.

14.1.3 Conversational Implicature

The final important property of conversation is the way the interpretation of an utterance relies
on more than just the literal meaning of the sentences.

A: And, whay day in May did you want to travel?
C: Ok uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the question. The speaker seems to expect the
hearer to draw certain inferences; These kind of examples were pointed out by Grice (1975,1978)
as part of his theory of conversational implicature. Implicature means a particular class of
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licensed inferences. Grice proposed that what enables hearers to draw these inferences is that
conversation is guided by a set of maxims, general heuristics which play a guiding role in the
interpretation of conversational utterances. He proposed the following four maxims:

• Maxim of Quantity: be exactly as informative as is required.

• Maxim of Quality: try to make your contribution one that is true.

• Maxim of Relevance: be relevant.

• Maxim of Manner: be perspicuous.

14.1.4 Dialogue Acts

An important insight about conversation, due to Austin (1962), is that an utterance in a dialogue
is a kind of action being performed by the speaker.

I name this ship the Titanic.
I second that motion.

Verbs like name, second... are called performative verbs, and Austin called these kinds of
actions speech acts. What makes Austin’s work so far-reaching is that speech acts are not
confined to this small class of performative verbs. Austin’s claim is that the utterance of any
sentence is a real speech situation constitutes three kinds of acts:

• locutionary act: the utterance of a sentence with a particular meaning.

• illocutionary act: the act of asking, answering, promising etc., in uttering a sentence.

• perlocutionary act: the (often intentional) production of certain effects upon the feelings,
thoughts, or actions of the addressee in uttering a sentence.

Searle (1975), in modifying a taxonomy of Austin’s, suggests that all speech acts can be classified
into one of 5 major classes:

• Assertives: committing the speaker to something’s being the case (suggesting, putting
forward, swearing, boasting, concluding).

• Directives: attempts by the speaker to get the addressee to do something (asking, ordering,
requesting, inviting, advising, begging).

• Commissives: committing the speaker to some future course of action (promising, plan-
ning, vowing, betting, opposing).

• Expressives: expressing the psychological state of the speaker about a state of affairs
(thanking, apologizing, welcoming, deploring).

• Declarations: bringing about a different state of the world via the utterance (including
many of the performative examples above, I resign, You’re fired).

14.2 Dialogue System Architecture

The two blocks “Speech Recognition” and “Text-to-Speech Synthesis” will be analyzed in future
sections.
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“Natural Language Understanding”: there are many ways to represent the meaning of sentences.
For speech dialogue systems, the most common one is the Frame and slot semantics:

The simplest way to generate these semantics is by using CFG in which the LHS of rules is a
semantic category.

The “Natural Language Generation” block, instead, chooses syntactic structures and words to
express meaning. Generators have three components: a sentence planner, a surface realizer and
a prosody assigner :

The “Task Manager” represents the behaviour of the Agent. It depends on the goal of the
Agent: specific (e.g. flight booking), less specific (e.g. synthetic psychologist), general (open
conversation, much more difficult). It can be modeled with Logics or with a Machine Learning
approach (Reinforcement Learning is quite popular).

Let’s now focus on the Dialogue Manager.

14.3 Frame Based Dialog Agents

Modern task-based dialog systems are based on a domain ontology, a knowledge structure
representing the kinds of intentions the system can extract from user sentences. The ontology
defines one or more frames, each a collection of slots, and defines the values that each slot can
take. This frame-based architecture was first introduced in 1977 in the influential GUS system
for travel planning.
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The control architecture of frame-based dialog systems is designed around the frame. The goal
is to fill the slots in the frame with the fillers the user intends, and then perform the relevant
action for the user (answering a question, or booking a flight). Most frame-based dialog systems
are based on finite-state automata that are hand-designed for the task by a dialog designer.

This system completely controls the conversation with the user. It asks the user a series of
questions, ignoring (or misinterpreting) anything that is not a direct answer to the question
and then going on to the next question. The speaker in initiative control of any conversation is
said to have the initiative in the conversation. Systems that completely control the conversation
in this way are thus called system-initiative.

The single-initiative finite-state dialog architecture has the advantage that the system always
knows what question the user is answering. This means the system can prepare the speech
recognizer with a language model tuned to answers for this question, and also makes natural
language understanding easier.
Most finite-state systems also allow universal commands that can be said anywhere in the
dialog, like help, to give a help message, and start over (or main menu), which returns the user
to some specified main start state.
Nonetheless such a simplistic finite-state architecture is generally applied only to simple tasks
such as entering a credit card number, or a name and password. For most applications, users
need a bit more flexibility.

The standard GUS architecture for frame-based dialog systems, used in various forms in modern
systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, therefore follows the frame
in a more flexible way. The system asks questions of the user, filling any slot that the user
specifies, even if a user’s response fills multiple slots or doesn’t answer the question asked. The
system simply skips questions associated with slots that are already filled. Slots may thus be
filled out of sequence. The GUS architecture is thus a kind of mixed initiative, since the user
can take at least a bit of conversational initiative in choosing what to talk about.

14.3.1 Open vs. Directive Prompts

Open prompt:
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• system gives user very few constraints

• users can respond how they please

• How may I help you?

Directive prompt:

• explicit instructs user how to respond

• Say yes if you accept the call; otherwise, say no.

14.3.2 Restrictive vs. Non-restrictive grammars

Restrictive grammar:

• language model which strongly constraints the ASR system, based on dialogue state.

• i.e. the Agent ASR is only able to understand specific words at specific conversation
points.

Non-restrictive grammar:

• open language model which is not restricted to a particular dialogue state.

Summarizing:

15 Advanced Dialogue Systems

Understanding and participating in dialog requires knowing whether the person you are talking
to is making a statement or asking a question. Asking questions, giving orders, or making
informational statements are things that people do in conversation, yet dealing with these kind
of actions in dialog (what we will call dialog acts) is something that the GUS-style frame-based
dialog systems are completely incapable of.

In this section we will introduce the dialogue-state architecture. Like the GUS systems, the
dialog-state architecture is based on filling in the slots of frames, and so dialog-state systems
have an NLU component to determine the specific slots and fillers expressed in a user’s sentence.
Systems must additionally determine what dialog act the user was making, also taking into
account the dialog context.

Furthermore, the dialog-state architecture has a different way of deciding what to say next
than the GUS systems. Simple frame-based systems often just continuously ask questions cor-
responding to unfilled slots and then report back the results of some database query. But in
natural dialog users sometimes take the initiative, such as asking questions of the system; alter-
natively, the system may not understand what the user said, and may need to ask clarification
questions. The system needs a dialog policy to decide what to say.
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As we can see from the image, the parts that are different than the simple GUS system are the
dialog state tracker which maintains the current state of the dialog (which include the user’s
most recent dialog act, plus the entire set of slot-filler constraints the user has expressed so far)
and the dialog policy, which decides what the system should do or say next.

In the previous section, we have spoken about the idea of speech acts and grounding. Now we
will combine these two aspects into a single kind of action called dialogue act. Different types
of dialog systems require labeling different kinds of acts, and so the tagset (defining what a
dialog act is exactly) tends to be designed for particular tasks.

Dialog acts don’t just appear discretely and independently; conversations have structure, and
dialog acts reflect some of that structure. One aspect of this structure comes from the field
of conversational analysis or CA, which defines adjacency pairs as a pairing of two dialog
acts, like QUESTIONS and ANSWERS, PROPOSAL and ACCEPTANCE (or REJECTION),
COMPLIMENTS and DOWNPLAYERS, GREETING and GREETING. This can help dialog-
state models decide what actions to take. Note however that dialog acts aren’t always followed
immediately by their second pair part, thus making the task more complex.

15.1 Dialogue State: Interpreting Dialogue Acts

How can we interpret a dialog act, deciding whether a given input is a QUESTION, a STATE-
MENT, or a SUGGEST (directive)?
One could think that we can just use the surface syntactic forms as a useful cue, since yes-no
questions in English have aux-inversion (the auxiliary verb precedes the subject), statements
have declarative syntax (no aux-inversion), and commands have no syntactic subject. However,
the surface form can be different from the speech act type, like in a sentence of the type
“Are you capable of giving me a list of...?” Indeed, this would look like a INFO-REQUEST, so
the answer is YES. Of course, as we know this is not the case (it’s like if you ask your friend
“Do you know what time is it?” and he answers “Yes.”...Not so funny.
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15.1.1 Dialogue Act Interpretation as Statistical Classification

There are a lot of clues in each sentence that can tell us which DA it is:

• Words and Collocations:

– Please or would you: good cue for REQUEST

– Are you: good cue for INFO-REQUEST

• Prosody:

– Rising pitch is a good cue for INFO-REQUEST

– Loudness/stress can help distinguish yeah/AGREEMENT from yeah/BACKCHANNEL

• Conversational Structure: Yeah following a proposal is probably AGREEMENT; yeah
following an INFORM probably a BACKCHANNEL

Since our goal is to decide for each sentence what dialogue act it is, we are dealing with a
classification problem with N classes, where N is the number of dialog acts. Following the
order of the previous list, we have:

• Words and Syntax: probability of a sequence of words given a dialogue act:
P (“do you” | Question)

• Prosody: probability of prosodic features given a dialogue act:
P ([pitch rises at the end of sentence] | Question)

• Conversational Structure: probability of one dialogue act following another:
P (Answer | Question)

As one can notice, it seems an HMM, where the Conversational Structure probability is the
transition probability, while the other two are emission probabilities.

15.1.2 A special case: Detecting Correction Acts

Some dialog acts are important because of their implications for dialog control. If a dialog
system misrecognizes or misunderstands an utterance, the user will generally correct the error
by repeating or reformulating the utterance. Detecting these user correction acts is therefore
quite important. Ironically, it turns out that corrections acts are actually harder to recognize
than normal sentences! One reason for this is that speakers sometimes use a specific prosodic
style for corrections called hyperarticulation, in which the utterance contains some exagger-
ated energy, duration, or F0 contours. Even when they are not hyperarticulating, users who
are frustrated seem to speak in a way that is harder for speech recognizers.

Machine Learning algorithms can be used to detect these corrections, by using some standard
features like lexical information, prosodic features, lenght, ASR confidence, Language Model
probability, various dialogue features (repetition).
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15.2 Dialogue Policy: Generating Dialogue Acts (Confirmation and Rejec-
tion)

Modern dialog systems often make mistakes. It is therefore important for dialog systems to make
sure that they have achieved the correct interpretation of the user’s input. This is generally
done by two methods: confirming understandings with the user and rejecting utterances that
the system is likely to have misunderstood.

Explicit confirmation:

S: Which city do you want to leave from?
U: Baltimore
S: Do you want to leave from Baltimore?
U: Yes

Implicit confirmation:

U: I’d like to travel to Berlin
S: When do you want to travel to Berlin?

Explicit and implicit confirmation have complementary strengths. Explicit confirmation makes
it easier for users to correct the system’s misrecognitions since a user can just answer “no”
to the confirmation question. But explicit confirmation is awkward and increases the length
of the conversation. The explicit confirmation dialog fragments above sound non-natural and
definitely non-human; implicit confirmation is much more conversationally natural.

Modern systems are adaptive, i.e. they decide what approach to use according to some pa-
rameters: ASR can give a confidence metric, which expresses how convinced system is of its
transcription of the speech. If the level of confidence is high, then use implicit confirmation,
otherwise use explicit confirmation.

Rejection, instead, happens when the system gives the user a prompt like I’m sorry, I didn’t
understand that.
We reject when the ASR confidence is too low or if the best interpretation is semantically
ill-formed. Thus, now we can have four level of confidence:

• Below confidence threshold =⇒ reject

• Above threshold =⇒ explicit confirmation

• If even higher =⇒ implicit confirmation

• Even higher =⇒ no confirmation at all

When an utterance is rejected, systems often follow a strategy of progressive prompting or
escalating detail.

S: When would you like to leave?
U: Well, um, I need to be in New York in time for the first World Series game.
S: Sorry, I didn’t get that. Please say the month and day you’d like to leave.
U: I wanna go on October fifteenth.
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16 Lexicons for Sentiment, Affect, and Connotation

How should affective meaning be defined? One influential typology of affective states comes from
Scherer (2000), who defines each class of affective states by factors like its cognition realization
and time course:

• Emotion: Relatively brief episode of response to the evaluation of an external or internal
event as being of major significance. (angry, sad, joyful, fearful, ashamed, proud, elated,
desperate)

• Mood: Diffuse affect state, most pronounced as change in subjective feeling, of low in-
tensity but relatively long duration, often without apparent cause. (cheerful, gloomy,
irritable, listless, depressed, buoyant)

• Interpersonal stance: affective stance taken toward another person in a specific interaction,
colouring the interpersonal exchange in that situation. (distant, cold, warm, supportive,
contemptuous, friendly)

• Attitude: Relatively enduring, affectively colored beliefs, preferences, and predispositions
towards objects or persons. (liking, loving, hating, valuing, desiring)

• Personality traits: Emotionally laden, stable personality dispositions and behavior ten-
dencies, typical for a person. (nervous, anxious, reckless, morose, hostile, jealous)

Various classifiers have been successfully applied to many of the task related to sentiment
analysis etc., using all the words in the training set as input to a classifier which then determines
the affect status of the text. In this case, however, we will use an alternative model, in which
instead of using every word as a feature, we focus only on certain words, ones that carry
particularly strong cues to affect or sentiment. We call these lists of words affective lexicons
or sentiment lexicons. These lexicons presuppose a fact about semantics: that words have
affective meanings or connotations.

16.1 Emotion

Detecting emotion has the potential to improve a number of language processing tasks. Au-
tomatically detecting emotions in reviews or customer responses (anger, dissatisfaction, trust)
could help businesses recognize specific problem areas or ones that are going well. Emotion
recognition could help dialog systems like tutoring systems detect that a student was unhappy,
bored, hesitant, confident, and so on. Emotion can play a role in medical informatics tasks
like detecting depression or suicidal intent. Detecting emotions expressed toward characters in
novels might play a role in understanding how different social groups were viewed by society at
different times.
There are two widely-held families of theories of emotion. In one family, emotions are viewed as
fixed atomic units, limited in number, and from which others are generated, often called basic
emotions (Tomkins 1962, Plutchik 1962).

The second class of emotion theories views emotion as a space in 2 or 3 dimensions (Russell,
1980). Most models include the two dimensions valence and arousal, and many add a third,
dominance. These can be defined as:

• valence: the pleasantness of the stimulus

• arousal: the intensity of emotion provoked by the stimulus
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• dominance: the degree of control exerted by the stimulus

16.2 Semi-supervised Induction of Affect Lexicons

16.2.1 Semantic axis methods

One of the most well-known lexicon induction methods, the Turney and Littman (2003) algo-
rithm, is given seed words like good or bad, and then for each word w to be labeled, measures
both how similar it is to good and how different it is from bad. Here we describe a slight
extension of the algorithm due to An et al. (2018), which is based on computing a semantic
axis.
In the first step, we choose seed words by hand. Because the sentiment or affect of a word is
different in different contexts, it’s common to choose different seed words for different genres,
and most algorithms are quite sensitive to the choice of seeds.
In the second step, we compute embeddings for each of the pole words. These embeddings
can be off-the-shelf word2vec embeddings, or can be computed directly on a specific corpus (for
example using a financial corpus if a finance lexicon is the goal), or we can fine-tune off-the-shelf
embeddings to a corpus. Fine-tuning is especially important if we have a very specific genre
of text but don’t have enough data to train good embeddings. In fine-tuning, we begin with
off-the-shelf embeddings like word2vec, and continue training them on the small target corpus.
Once we have embeddings for each pole word, we we create an embedding that represents each
pole by taking the centroid of the embeddings of each of the seed words; recall that the centroid
is the multidimensional version of the mean.

Given a set of embeddings for the positive seed words

S+ = {E(w+
1 ), E(w+

2 ), ..., E(w+
n )}
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and embeddings for the negative seed words

S− = {E(w−1 ), E(w−2 ), ..., E(w−m)}

the pole centroids are:

V + =
1

n

n∑
1

E(w+
i )

V − =
1

m

m∑
1

E(w−i )

The semantic axis defined by the poles is computed just by subtracting the two vectors:

Vaxis = V + − V −

V axis is a vector in the direction of sentiment. Finally, we compute how close each word w is to
this sentiment axis, by taking the cosine between w’s embedding and the axis vector. A higher
cosine means that w is more aligned with S+ than S−.

score(w) = cos(E(w), Vaxis) =
E(w) · V axis

||E(w)|| · ||V axis||

16.2.2 Label propagation

An alternative family of methods defines lexicons by propagating sentiment labels on graphs,
an idea suggested in early work by Hatzivassiloglou and McKeown (1997). We’ll describe the
simple SentProp (Sentiment Propagation) algorithm of Hamilton et al. (2016a), which has four
steps:

1. Define a graph: given word embeddings, build a weighted lexical graph by connecting
each word with its k nearest neighbors (according to cosine similarity). The weights of the edge
between words wi and wj are set as:

Ei,j = arccos
(
−

wT
i wj

||wi|| ||wj ||

)
2. Define a seed set: by hand, choose positive and negative seed words.

3. Propagate polarities from the seed set: now we perform a random walk on this graph,
starting at the seed set. In a random walk, we start at a node and then choose a node to move
to with probability proportional to the edge probability. A word’s polarity score for a seed set
is proportional to the probability of a random walk from the seed set landing on that word.

4. Create word scores: we walk from both positive and negative seed sets, resulting in
positive (score+(wi)) and negative (score−(wi)) label scores. We then combine these values
into a positive-polarity score as:
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score+(wi) =
score+(wi)

score+(wi) + score−(wi)

It’s often helpful to standardize the scores to have zero mean and unit variance within a corpus.

5. Assign confidence to each score: because sentiment scores are influenced by the seed set,
we’d like to know how much the score of a word would change if a different seed set is used. We
can use bootstrap-sampling to get confidence regions, by computing the propagation B times
over random subsets of the positive and negative seed sets (for example using B = 50 and
choosing 7 of the 10 seed words each time). The standard deviation of the bootstrap-sampled
polarity scores gives a confidence measure.

16.2.3 Using WordNet to Learn Polarity

A word’s synonyms presumably share its polarity while a word’s antonyms probably have the
opposite polarity. After a seed lexicon is built, each lexicon is updated as follows, possibly
iterated.

Lex+: Add synonyms of positive words (well) and antonyms (like fine) of negative words
Lex−: Add synonyms of negative words (awful) and antonyms (like evil) of positive words

An extension of this algorithm assigns polarity to WordNet senses, called SentiWordNet,
where polarity is assigned to entire synsets rather than words.

In summary, semisupervised algorithms use a human-defined set of seed words for the two poles
of a dimension, and use similarity metrics like embedding cosine, coordination, morphology,
or thesaurus structure to score words by how similar they are to the positive seeds and how
dissimilar to the negative seeds.

16.3 How to Measure Polarity of a Phrase?

Positive phrases co-occur more with “excellent”.
Negative phrases co-occur more with “poor”.

But how can we measure co-occurence?

16.3.1 Mutual Information

The mutual information (MI) of two random variables is a measure of the mutual dependence
between the two variables. More specifically, it quantifies the ”amount of information” obtained
about one random variable through observing the other random variable.
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I(X,Y ) =
∑
x∈X

∑
y∈Y

P (x, y) log2
P (x, y)

P (x)P (y)

Pointwise Mutual Information:

In contrast to mutual information, PMI refers to single events, whereas MI refers to the average
of all possible events.

PMI(x, y) = log2
P (x, y)

P (x)P (y)

So how much more do two words co-occur than if they were independent?

PMI(word1, word2) = log2
P (word1, word2)

P (word1)P (word2)

In computational linguistics, PMI has been used for finding collocations and associations be-
tween words. For instance, countings of occurrences and co-occurrences of words in a text
corpus can be used to approximate the probabilities p(x) and p(x, y) respectively.

For example, let’s compute the PMI value of the words puerto and rico using the first 50 millions
words of Wikipedia as text collection:

word1: puerto
countword1: 1938

word2: rico
countword2: 1311

We know that the count of co-occurences is 1159, hence:

PMI(puerto, rico) = ln
(

50.000.000 · 1159

1938 · 1311

)
= 10.034

16.4 Supervised Learning of Word Sentiment

The web contains an enormous number of online reviews for restaurants, movies, books, or other
products, each of which have the text of the review along with an associated review score: a
value that may range from 1 star to 5 stars, or scoring 1 to 10.
We can use this review score as supervision: positive words are more likely to appear in 5-
star reviews; negative words in 1-star reviews. And instead of just a binary polarity, this kind
of supervision allows us to assign a word a more complex representation of its polarity: its
distribution over stars (or other scores).

For example, we could compute the IMDB likelihood of a word like disappoint(ed/ing) occurring
in a 1 star review by dividing the number of times disappoint(ed/ing) occurs in 1-star reviews in
the IMDB dataset (8,557) by the total number of words occurring in 1-star reviews (25,395,214),
so the IMDB estimate of P (disappointing | 1) is .0003.

A slight modification of this weighting, the normalized likelihood, can be used as an illuminating
visualization (Potts, 2011):
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P (w|c) =
count(w, c)∑
w∈C count(w, c)

PottsScore(w) =
P (w|c)∑
c P (w|c)

Dividing the IMDB estimate P (disappointing | 1) of .0003 by the sum of the likelihood P (w|c)
over all categories gives a Potts score of 0.10. The word disappointing thus is associated with
the vector [.10, .12, .14, .14, .13, .11, .08, .06, .06, .05].

16.5 Affect Recognition

The most common algorithms involve supervised classification: a training set is labeled for
the affective meaning to be detected, and a classifier is built using features extracted from the
training set. As with sentiment analysis, if the training set is large enough, and the test set is
sufficiently similar to the training set, simply using all the words or all the bigrams as features in
a powerful classifier like SVM or logistic regression is an excellent algorithm whose performance
is hard to beat. Thus we can treat affective meaning classification of a text sample as simple
document classification.
Some modifications are nonetheless often necessary for very large datasets. For example, the
Schwartz et al. (2013) study of personality, gender, and age using 700 million words of Facebook
posts used only a subset of the n-grams of lengths 1-3. Only words and phrases used by at least
1% of the subjects were included as features, and 2-grams and 3-grams were only kept if they
had sufficiently high PMI (PMI greater than 2 · length, where length is the number of words):
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pmi(phrase) = log
p(phrase)∏
w∈phrase p(w)

Various weights can be used for the features, including the raw count in the training set, or
some normalized probability or log probability. Schwartz et al. (2013), for example, turn feature
counts into phrase likelihoods by normalizing them by each subject’s total word use:

p(phrase|subject) =
freq(phrase, subject)∑

phrase′∈vocab(subject) freq(phrase
′, subject)

16.6 Personality Detection

Many theories of human personality are based around a small number of dimensions, such as
various versions of the “Big Five” dimensions (Digman, 1990):

• Extroversion vs. Introversion: sociable, assertive, playful vs. aloof, reserved, shy

• Emotional stability vs. Neuroticism: calm, unemotional vs. insecure, anxious

• Agreeableness vs. Disagreeableness: friendly, cooperative vs. antagonistic, faultfinding

• Conscientiousness vs. Unconscientiousness: self-disciplined, organized vs. inefficient, care-
less

• Openness to experience: intellectual, insightful vs. shallow, unimaginative

17 Computational Phonology (Speech Recognition)

The core task of automatic speech recognition is take an acoustic waveform as input and
produce as output a string of words. The core task of text-to-speech synthesis is to take a
sequence of text words and produce as output an acoustic waveform.
Phonology is the area of linguistics that describes the systematic way that sounds are differ-
ently realized in different environments, and how this system of sounds is related to the rest of
the grammar. Phonetics is the study of the speech sounds used in the languages of the world.
We will be modeling the pronunciation of a word as a string of symbols which represent phones
or segments. A phone is a speech sound. Phones are divided into two main classes: conso-
nants and vowels. Consonants are made by restricting or blocking the airflow in some way, and
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may be voiced or unvoiced. Vowels have less obstruction, are usually voiced, and are generally
louder and longer-lasting than consonants.
Consonants and vowels combine to make a syllable. There is no completely agreed-upon defi-
nition of a syllable; roughly speaking a syllable is a vowel-like sound together with some of the
surrounding consonants that are most closely associated with it.

17.1 The Phoneme and Phonological Rules

All [t]s are not created equally. That is, phones are often produced differently in different
contexts. For example, consider the different pronunciation of [t] in the words tunafish and
starfish. The [t] of tunafish is aspirated. Aspiration is a period of voicelessness after a stop
closure and before the onset of voicing of the following vowel. Since the vocal cords are not
vibrating, aspiration sounds like a puff of air after the [t] and before the vowel. By contrast, a
[t] following an initial [s] is unaspirated; thus the [t] in starfish has no period of voicelessness
after the [t] closure. This variation in the realization of [t] is predictable: whenever a [t] begins
a word or unreduced syllable in English, it is aspirated. The same variation occurs for [k], e.g.
in Jimi Hendrix’s lyrics:

“Scuse me, while I kiss the sky”

is often understood as

“Scuse me, while I kiss this guy”

How do we represent this relation between a [t] and its different realizations in different con-
texts? We generally capture this kind of pronunciation variation by positing an abstract class
called the phoneme, which is realized as different allophones in different contexts.
The relationship between a phoneme and its allophones is often captured by writing a phono-
logical rule:

/t/ → [t] / θ

In this notation, the surface allophone appears to the right of the arrow, and the phonetic
environment is indicated by the symbols surrounding the underbar.

17.2 Acoustic Processing of Speech

The input to a speech recognizer, like the input to the human ear, is a complex series of changes
in air pressure. We represent sound waves by plotting the change in air pressure over time.
Two important characteristics of a wave are its frequency and amplitude.
Two important perceptual properties are related to frequency and amplitude. The pitch of
a sound is the perceptual correlate of frequency; in general if a sound has a higher-frequency
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we perceive it as having a higher pitch, although the relationship is not linear, since human
hearing has different acuities for different frequencies. Similarly, the loudness of a sound is the
perceptual correlate of the power, which is related to the square of the amplitude. So sounds
with higher amplitudes are perceived as louder, but again the relationship is not linear.

While some broad phonetic features (presence of voicing, stop closures, fricatives) can be inter-
preted from a waveform, more detailed classification (which vowel? which fricative?) requires a
different representation of the input in terms of spectral features. Spectral features are based
on the insight of Fourier that every complex wave can be represented as a sum of many simple
waves of different frequencies.
A spectrum is a representation of these different frequency components of a wave and it can
be computed by a Fourier transform.

Why is spectrum useful? It turns out that these spectral peaks that are easily visible in a
spectrum are very characteristic of different sounds; phones have characteristic spectral “sig-
natures”. For example, different chemical elements give off different wavelengths of light when
they burn, allowing us to detect elements in stars light-years away by looking at the spectrum of
the light. Similarly, by looking at the spectrum of a waveform, we can detect the characteristic
signature of the different phones that are present.
While a spectrum shows the frequency components of a wave at one point in time, a spectro-
gram is a way of envisioning how the different frequencies which make up a waveform change
over time. The dark horizontal bars on a spectrogram, representing spectral peaks, usually of
vowels, are called formants.

17.2.1 Feature Extraction

Disclaimer: this part is extensively discussed in the book, while here, following what we did
during the course, I will provide a brief overview of the main steps and concepts.

What we want to do is this: sound wave → feature vector

In just two words, the idea is the following: the input soundwave is first digitalized. This
process has two steps:

• Sampling: a signal is sampled by measuring its amplitude at a particular time; the sam-
pling rate is the number of samples taken per second.

• Quantization: since even a 8000 Hz sampling rate requires 8000 amplitude measurements
for each second of speech, it is important to store the amplitude measurements efficiently.
Thus they are usually stored as integers, either 8-bit or 16-bit. This process of representing
a real-valued number as a integer is called quantization.

Once a waveform has been digitalized, it is converted to some set of spectral features. One
popular feature set is cepstral coefficients.
Taking into consideration a source-filter model of the human phonation, we can say that the
glottis produces pulses (source), while the vocal tract shapes such pulses (filter). Source and
filter are not equally useful. The source, indeed, is not important for ASR; what we are interested
in is the filter, which carries the important information. The cepstrum can be used to separate
source and filter and it can be derived as follows:

• Take a digitized waveform x[n]

• Compute a discrete Fourier transform X[k]
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• Consider the discrete Fourier transform as a new digitized waveform

• Compute the discrete Fourier transform of the log of such a new waveform

• The cepstrum coefficients are the amplitudes of such new spectrum

What is actually used is the mel-cepstrum, obtained by applying the cepstrum to the mel-
spectrum. The difference between the cepstrum and the mel-frequency cepstrum is that in the
MFC, the frequency bands are equally spaced on the mel scale, which approximates the human
auditory system’s response more closely than the linearly-spaced frequency bands used in the
normal cepstrum.

Thus, the MFCC coefficients that we have obtained are:

• First mel-cepstrum coefficients cm[n] 0 ≤ n ≤ 11

• Variations

– Deltas:

d(cm[n]) =
cm[n+ 1]− cm[n− 1]

2
0 ≤ n ≤ 11

– Double-deltas:

dd(cm[n]) =
dm[n+ 1]− dm[n− 1]

2
0 ≤ n ≤ 11

– Energy:

∗ Energy of the samples: Em =
∑L−1

n=0 x
2[n]

∗ Energy of deltas: Ed =
∑L−1

n=0 d
2(cm[n])

∗ Energy of double-deltas: Edd =
∑L−1

n=0 dd
2(cm[n])

Thus 39 coefficients (tend to be uncorrelated) for each chunk (∼ 10 ms).

17.3 Speech Recognition Architecture

The problem that we want to solve can be expressed as follows:

given a vocal signal, composed of M MFCC vectors, compute the right sequence of M subphones
s:

ŝ[0 : M − 1] = arg max
s[0:M−1]

(P (s[0 : M − 1]|MFCC[0 : M − 1]))

Thus, we can adopt the usual Bayesian approach:

P (s[0 : M − 1]|MFCC[0 : M − 1]) =
P (MFCC[0 : M − 1]|s[0 : M − 1]) · P (s[0 : M − 1])

P (MFCC[0 : M − 1])

=

∏M−1
m=0 P (MFCC[m]|s[m]) · P (s[0 : Ms − 1])

P (MFCC[0 : M − 1])

=

∏M−1
m=0 P (MFCC[m]|s[m]) · P (s[m]|s[m− 1])

P (MFCC[0 : M − 1])
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where we assumed that the MFCC are independent, that MFCC[m] only depends on s[m] and
in the last step we adopted the Markov assumption.

Thus...

ŝ[0 : M − 1] = arg max
s[0:M−1]

(∏M−1
m=0 P (MFCC[m]|s[m]) · P (s[m]|s[m− 1])

P (MFCC[0 : M − 1]

)
= arg max

s[0:M−1]

M−1∏
m=0

P (MFCC[m]|s[m]) · P (s[m]|s[m− 1])

The model, as we can see, is a HMM. More formally:

• Q = {s1, s2, ..., sNs}: set of subphones

• O: set of observations (MFCC vectors)

• A = {ai,j}: transition probability matrix
ai,j = P (s[m] = sj |s[m− 1] = si)

• B = {bj(ot)}: emission probability matrix
bj(ot) = P (MFCC[m] = ot|s[m] = sj)

Now, how are the features vectors turned into probabilities? There are two different approaches:

• Discretize MFCC → discrete HMM: B stored as an actual matrix

• Continue MFCC→ use Gaussian Mixture Model (GMM), where bj(ot) is actually a func-
tion (no matrix B exists) and we store the parameters of bj(ot)

17.3.1 Computing Acoustic Probabilities

One way to compute probabilities on feature vectors is to first cluster them into discrete symbols
that we can count; we can then compute the probability of a given cluster just by counting
the number of times it occurs in some training set. This method is usually called vector
quantization and it was quite common in early speech recognition algorithms. It has been
replaced by a more direct but compute-intensive approach: computing observation probabilities
on a real-valued (continuous) input vector. This method computes a probability density
function or pdf over a continuous space.
There are two popular version of the continuous approach. The most widespread of the two is
the use of Gaussian pdfs, in the simplest version of which each state has a single Gaussian
function which maps the observation vector ot to a probability. An alternative approach is the
use of neural networks.

In the simplest use of Gaussians, we assume that the possible values of the observation feature
vector ot are normally distributed, and so we represent the observation probability function
bj(ot) as a Gaussian curve with mean vector µj and covariance matrix Σj .

bj(ot) =
1√

2π
∣∣∣Σj∣∣∣e

[(ot−µj)T Σ−1
j (ot−µj)]
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Usually we make the simplifying assumption that the covariance matrix Σj is diagonal, i.e. that
it contains the simple variance of cepstral feature 1, the simple variance of cepstral feature 2,
and so on, without worrying about the effect of cepstral feature 1 on the variance of cepstral
feature 2. This means that in practice we are keeping only a single separate mean and variance
for each feature in the feature vector.
Most recognizers do something even more complicated; they keep multiple Gaussians for each
state, so that the probability of each feature of the observation vector is computed by adding
together a variety of Gaussian curves. This technique is called Gaussian mixtures:

bj(ot) =

G−1∑
n=0

c(j)
n · g(ot|µ(j)

n ,Σ(j)
n )

g(ot|µ(j)
n ,Σ(j)

n ) =
1√

2π
∣∣∣Σ(j)

n

∣∣∣e
[(ot−µ(j)n )T (Σ

(j)
n )−1(ot−µ(j)n )]

Now, as we can see in the above image, the only thing the we have to do is the decoding
phase. Before proceeding in that direction, however, let’s represent our HMM.

17.3.2 Overview of HMM

Each phone is represented with 5 states:

• 3 emitting (beginning, middle, final) subphone states

• 2 non-emitting (start, end) states

Dividing up a phone in this way captures the intuition that the significant changes in the acoustic
input happen at a finer granularity than the phone; for example the closure and release of a
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stop consonant. Furthermore, many systems use a separate instance of each of these subphones
for each triphone context. Thus instead of 60 phone units, there could be as many as 603

context-dependent triphones. In practice, many possible sequences of phones never occur or
are very rare, so systems create a much smaller number of triphones models by clustering the
possible triphones.

17.3.3 Embedded Training

• Given a phoneset, a pronunciation lexicon and the transcribed wavefiles

• Build a “whole sentence” HMM for each sentence

• Initialize A probabilities to 0.5 (for loop-backs or for the correct next subphones) or to
zero (for all other transitions)

• Initialize B probabilities: randomly in case of discrete B or by setting the mean and
variance for each Gaussian to the global mean and variance for the entire training set in
case of GMM

• Run multiple iterations of the Baum-Welch algorithm

17.3.4 Decoding the HMM

In this final stage, we take a dictionary of word pronunciations and a language model (proba-
bilistic grammar) and use a Viterbi or A∗ decoder to find the sequence of words which has
the highest probability given the acoustic events.

Recall the the goal of the Viterbi algorithm is to find the best state sequence q = (q1q2q3...qt)
given the set of observed phones o = (o1o2o3...ot). More formally, we are searching for the
best state sequence q∗ = (q1q2...qT ), given an observation sequence o = (o1, o2...oT ) and a
model (a weighted automaton or state graph) λ. Each cell viterbi[i,t] of the matrix contains the
probability of the best path which accounts for the first t observations and ends in state i of
the HMM. This is the most-probable path out of all possible sequences of states of length t− 1:
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viterbi[t, i] = maxq1,q2,...,qt−1P (q1q2...qt−1, qt = i, o1, o2...ot|λ)

In order to compute viterbi[t,i], the Viterbi algorithm assumes the dynamic programming
invariant. This is the simplifying (but incorrect) assumption that if the ultimate best path for
the entire observation sequence happens to go through a state qi, this best path must include
the best path up to and including state qi. This doesn’t mean that the best path at any time t
is the best path for the whole sentence. A path can look bad at the beginning but turn out to
be the best path. The reason for making the Viterbi assumption is that it allows us to break
down the computation of the optimal path probability in a simple way; each of the best paths
at time t is the best extension of each of the paths ending at time t − 1. In other words, the
recurrence relation for the best path at time t ending in state j, viterbi[t,j], is the maximum of
the possible extensions of every possible previous path from time t− 1 to time t:

viterbi[t, j] = maxi(viterbi[t− 1, i]aij)bj(ot)

Disclaimer: much more on the Viterbi algorithm (and also A∗ decoder) can be found in the
book.

What is important to say before concluding this part is that actual implementations of Viterbi
decoding are more complex in two key ways. First, in an actual HMM for speech recogni-
tion, the input would not be phones, but the feature vector of spectral and acoustic features
we talked about. Thus, as we have seen, the observation likelihood probabilities bi(t) of
an observation ot given a state i will not simply take on the values 0 or 1, but will be more
fine-grained probability estimates, computed via mixture of Gaussian probability estimators (or
neural nets).
Second, in practice in large-vocabulary recognition it is too expensive to consider all possible
words when the algorithm is extending paths from one state-column to the next. Instead, low-
probability paths are pruned at each time step and not extended to the next state column.
This is usually implemented via beam search: for each state column (time step), the algo-
rithm maintains a short list of high-probability words whose path probabilities are within some
percentage (beam width) of the most probable word path. Only transitions from these words
are extended when moving to the next time step.
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17.3.5 Advanced Methods for Decoding

There are two main limitations of the Viterbi decoder. First, the Viterbi decoder does not
actually compute the sequence of words which is most probable given the input acoustics.
Instead, it computes an approximation to this: the sequence of states (i.e. phones or subphones)
which is most probable given the input. This difference may not always be important; the most
probable sequence of phones may very well correspond exactly to the most probable sequence
of words. But sometimes this does not happen. Consider for example a speech recognition
system whose lexicon has multiple pronunciation for each word. Suppose the correct word
sequence includes a word with very many pronunciations. Since the probabilities leaving the
start arc of each word must sum to 1.0, each of these pronunciation-paths through this multiple-
pronunciation HMM word model will have a smaller probability than the path through a word
with only a single pronunciation path.
A second problem with the Viterbi decoder is that it cannot be used with all possible language
models. In fact, the Viterbi algorithm as we have defined cannot take complete advantage of
any language model more complex than a bigram grammar. This is because of the fact that
a trigram grammar, for example, violates the dynamic programming invariant that makes
dynamic programming algorithms possible.

There are two classes of solutions to these problems. One class involves modifying the Viterbi
decoder to return multiple potential utterances and then using other high-level language model
or pronunciation-modeling algorithms to re-rank these multiple outputs (multiple-pass de-
coding).
The second solution to the problems with Viterbi decoding is to employ a completely different
decoding algorithm. The most common alternative is the stack decoder, also called the A∗

decoder, that we’ve already mentioned.

Other advanced techniques that can be used to improve the ASR’s results are:

• Spectral subtraction: to deal with additive noise (external sound source that is relatively
constant)

• Cepstral mean normalization: to deal with convolutional noise (introduced by channel
characteristics like different microphones)

• Vocal tract length normalization: warping the frequency axis of the speech power spectrum
to account for the fact that the precise locations of vocal-tract resonances vary roughly
monotonically with the physical size of the speaker

• Pitch normalization: MFCC does not make use of the pitch, but it can be distorted by
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the pitch, hence normalization could improve accuracy for children (not easy)

• Short non-verbal sounds (coughs, loud breathing...) → filled pauses

• Environmental sounds

• Modify the acoustic model: there are several methods, for example MLLR (Maximum
Likelihood Linear Regression) for GMM

17.4 Evaluation

The standard evaluation metric for speech recognition systems is the word error rate. The
word error rate is based on how much the word string returned by the recognizer differs from a
correct or reference transcription. Given such a correct transcription, the first step in computing
word errors is to compute the minimum edit distance in words between the hypothesized and
correct strings. The word error rate is then defined as follows (note that because the equation
includes insertions, the error rate can be great than 100%):

WER = 100 · Insertions+ Substitutions+Deletions

Total Words in Correct Transcripts

There is also the Sentence Error Rate:

SER = 100 · Number of sentences with at least one error

Total Number of Sentences

18 Text-To-Speech

A text-to-speech (TTS) system converts normal language text into speech:

There are different approaches in which we can perform waveform synthesis:

• Formant analysis: rules/filters are used to create speech using additive synthesis and
an acoustic model (physical modelling synthesis). The drawback of this approach is a
resulting “robotic” voice.

• Articulatory synthesis: modelling and simulating movements of articulators and acoustics
of vocal tract. Very complex approach.

• Concatenative synthesis: this is the most used approach in modern TTS.
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18.1 Concatenative TTS

Concatenative synthesis is based on a database of speech that has been recorded by a single
speaker. This database is then segmented into a number of short units, which can be phones,
diphones, syllables, words or other units. By selecting units appropriately, we can generate a
series of units which match the phone sequence in the input. By using signal processing to
smooth joins at the unit edges, we can simply concatenate the waveforms for each of these units
to form a single synthetic speech waveform.

However, before performing this unit selection, another important process is done: text anal-
ysis. Text analysis consists of going from text to phonemes and it can be described with the
following steps:

• Text Normalization: in this phase sentence tokenization is performed (often relying on
machine learning), non-standard words are handled (not an easy task, since NSW can be
ambiguous, e.g. how to pronunce 1970? Is it a date, a price or a string?) and homograph
disambiguation is done (e.g. bass as fish or as instrument).

• Phonetic Analysis: it transforms a word into a list of phonemes. There are two general
approaches:

– Dictionary based: collections of pronunciations, for each word

– Grapheme-to-phoneme conversion: for words non present in the dictionary (mostly
names)

For transparent languages, like Italian, pronunciation rules are used.

• Prosodic Analysis: [described below]

Prosodic Analysis

Prosody operates on longer linguistic units than phones, and hence is sometimes called the
study of suprasegmental phenomena. There are three main phonological aspects to prosody:
prominence, structure and tune. Prominence is a broad term used to cover stress and accent.
Sentences have prosodic structure in the sense that some words seem to group naturally together
and some words seem to have a noticeable break or disjuncture between them. Often prosodic
structure is described in terms of prosodic phrasing, meaning that an utterance has a prosodic
phrase structure in a similar way to it having a syntactic phrase structure. For example, in the
sentence I wanted to go to London, but could only get tickets for France there seems to be two
main prosodic phrases, their boundary occurring at the comma. These larger prosodic units are
commonly called intonation phrases, while phrases like I wanted — to go — to London are
called intermediate phrases.
Two utterances with the same prominence and phrasing patterns can still differ prosodically by
having different tunes. Tune refers to the intonational melody of an utterance. Intonational
tunes can be broken into component parts, the most important of which is the pitch accent.
Pitch accents occur on stressed syllables and form a characteristic pattern in the F0 contour.
A popular model of pitch accent classification is the Pierrehumbert or ToBI model, which says
there are 5 pitch accents in English, which are made from combining two simple tones (high H,
and low L) in various ways. A H+L patter forms a fall, while a L+H pattern forms a rise. An
asterisk is also used to indicate which tone falls on the stressed syllable.

So, a major task for a TTS system is to generate appropriate linguistic representations of
prosody, and from them generate appropriate acoustics patterns which will be manifested in
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the output speech waveform. The output of a TTS system with such a prosodic component is
a sequence of phones, each of which has a duration and an F0 (pitch) value. The duration of
each phone is dependent on the phonetic context.

Given the set of N factor weights fi, the Klatt formula for the duration d of a phone is:

d = dmin +

N∏
i=1

fi × (d̄− dmin)

The F0 value is influences by the factors discussed above, including the lexical stress, the
accented or focused element in the sentence, and the intonational tune of the utterance. From
the annotation, F0 is generated in two steps:

• Defining “key” F0 values for pitch accents and breaks

• Generate the F0 contour interpolating such F0 values

So, to summarize:

18.2 Evaluation

The evaluation process is usually done by human testers, following these indexes:
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• Intelligibility: the ability of the tester to correctly interpret the words and the meaning
of the utterance.

• Quality: measure of naturalness, fluency, clarity of the speech.

19 Machine Translation

Machine Translation is a sub-field of computational linguistics that investigates the use of
software to translate text or speech from one language to another.

Even if some aspects of the human language seem to be universal (every language, for example,
seems to have words for referring to people, for talking about women, men, and children, eating
and drinking, for being polite or not), many other are not, and this makes MT one of the most
difficult task to perform in NLP.
Morphologically, languages are often characterized along two dimensions of variation. The first
is the number of morphemes per word. The second dimension is the degree to which morphemes
are segmentable.
Synctatically, languages are perhaps most saliently different in the basic word order of verbs,
subjects and objects in simple declarative clauses. German, French, English and Mandaring,
for example, are all SVO languages, meaning that the verb tends to come between the subject
and object. Hindi and Japanese, by constrast, are SOV languages, while Irish and Classical
Arabic are VSO languages.
Another important syntactico-morphological distinction is between head-marking languages
and dependent-marking languages. Head-marking languages tend to mark the relation be-
tween the head and its dependents on the head, while dependent-marking languages tend to
mark the relation on the non-head.
Another distinction can be done by considering if the direction of motion and manner of mo-
tion are marked on the verb or on the satellites, e.g. in the following sentence, in English the
direction is marked on the particle out :

The bottle floated out.

but in Spanish the direction is marked on the verb:

La botella salió flotando.

In addition to such properties that systematically vary across large classes of languages, there
are many specific characteristics, more or less unique to single languages. To give an idea of how
trivial, yet crucial, these differences can be, think of dates. Dates not only appear in various
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formats, the calendars themselves may differ, for example dates in Japanese often are relative
to the start of the current Emperor’s reign rather than to the start of the Christian Era.

Talking about lexical divergences, instead, we can have problems like:

• Word to phrases:
English: computer science
French: informatique

• Part of Speech divergences:
English: She likes to sing
German: Sie singt gerne [She sings likefully]

• Grammatical specificity:
Italian: plural pronouns have gender (essi/esse)
English: plural pronouns have no gender (they)

• Semantic specificity:
English: brother
Mandarin: gege (older brother), didi (younger brother)

Further, one language may have a lexical gap, where no word or phrase, short of an explanatory
footnote, can express the meaning of a word in the other language.
Moreover, dependencies on cultural context, as manifest in the background and expectations of
the readers of the original and translation, further complicate matters. A number of translation
theorists refer to a clever story by Jorge Luis Borges showing that even two linguistic texts with
the same words and grammar may have different meanings because of their different cultural
contexts. These last points suggest a more general question about cultural differences and the
possibility (or impossibility) of translation. A theoretical position sometimes known as Sapir-
Whorf hypothesis suggests that language may constrain thought, i.e. that the language you
speak may affect the way you think. To the extent that this hypothesis is true, there can be no
perfect translation, since speakers of the source and target languages necessarily have different
conceptual systems. In any case it is clear that the differences between languages run deep, and
that the process of translation is not going to be simple.

19.1 Direct Translation

Direct MT systems are built according the idea that MT systems should do as little word as
possible. Typically they are built with only one language pair in mind, and the only processing
done is that needed to get from one specific source language to one specific target language. A
direct MT system is typically composed of several stages, each focused on one type of problem.
For example, these are six stages to rewrite a Japanese sentence as an English one:

1. morphological analysis: segments the input string into words and does morphological
analysis.

2. lexical transfer of content words: chooses translation equivalents for the content words,
e.g. using a bilingual dictionary.

3. various work relating to prepositions

4. SVO rearrangements

5. miscellany: handles things like moving case markers before nouns and inserting articles.
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6. morphological generation: inflects the verbs.

19.2 The Transfer Model

Another strategy is to translate by a process of overcoming these differences, altering the struc-
ture of the input to make it conform to the rules of the target language. This can be done
by applying constrastive knowledge, that is, knowledge about the differences between the
two languages. Systems that use this strategy are sometimes said to be based on the transfer
model.
More precisely, this model involves three phases:

• Analysis: syntactically parse source language

• Transfer: rules to turn this parse into parse for target language

• Generation: generate target sentence from parse tree

Let’s consider an example we mentioned before: in English the unmarked order in a noun-
phrase had adjectives precede nouns, while in French adjectives follow nouns (even if there are
exceptions to this generalization). The following scheme shows how a MT system based on the
transfer approach can use syntactic transformation to represent this difference:

19.3 The Interlingua Idea: Using Meaning

One problem with the transfer model is that it requires a distinct set of transfer rules for each
pair of languages. An alternative approach is to treat translation as a process of extracting the
meaning of the input and then expressing that meaning in the target language. If this can be
done, a MT system can do without contrastive knowledge, merely relying on the same syntactic
and semantic rules used by a standard interpreter and generator for the language.
This scheme presupposes the existence of a meaning representation, or interlingua, in a
language-independent canonical form. The idea is for the interlingua to represent all sentences
that mean the same thing in the same way, regardless of the language they happen to be in.
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Translation in this model proceeds by performing a semantic analysis on the input from lan-
guage X into the interlingual representation and generating from the interlingua to language Y.
A frequently used element in interlingual representations is the notion of a small fixed set of
thematic roles (we already discussed about this). When used in an interlingua, these thematic
roles are taken to be language universals.

19.4 Statistical Techniques

There is another way to look at the problem of machine translation, which consists on focusing
on the result, not the process. Taking this perspective, let’s consider what it means for a
sentence to be a translation of some other sentence. This is an issue to which philosophers of
translation have given a lot of thought. The consensus seems to be, sadly, that it is impossible
for a sentence in one language to be a translation of a sentence in other, strictly speaking. For
example, one cannot really translate Hebrew adonai roi (“the Lord is my shepherd”) into the
language of a culture that has no sheep. We have two options:

• Something fluent and understandable, but not faithful:
The Lord will look after me

• Something faithful, but not fluent or natural:
The Lord is for me like somebody who looks after animals with cotton-like hair

Thus, we have to compromise and this is exactly what translators do in practice: they produce
translations that do tolerably well on both criteria. This gives us an intuition: we can model
the goal of translation as the production of an output that maximizes some value function that
represents the importance of both faithfulness and fluency:

T̂ = arg max
T

fluency(T ) faithfulness(T, S)

where T is the target-language sentence and S the source-language sentence. As we did at the
beginning of this file, we can apply the noisy channel model so that we can think of the input
we must translate as a corrupted version of some target language sentence, and our task is to
discover that target language sentence:

T̂ = arg max
T

P (T )P (S|T )

To implement this, we need to quantify fluency P (T ), quantify faithfulness P (S|T ) and create
an algorithm to find the sequence that maximizes the product of these two things.
Here comes an important difference w.r.t. the previous three approaches. In those models
the process is fixed, in that there is no flexibility to trade-off a modicum of faithfulness for a
smidgeon of naturalness, or conversely, based on the specific input sentence at hand. This new
model, sometimes called statistical model of translation allows exactly that.

19.4.1 Quantifying Fluency

Fortunately, we already have some useful metrics for how likely a sentence is to be a real English
sentence: the language models we saw in previous sections, the N-gram models.
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Fluency models can be arbitrarily sophisticated; any technique that can assign a better proba-
bility to a target language string is appropriate, including the more sophisticated probabilistic
grammars.

19.4.2 Quantifying Faithfulness

Although it is hard to quantify this property, one basic factor often used in metrics for fidelity
is the degree to which the words in one sentence are plausible translations of the words of the
other. Thus we can approximate the probability of a sentence being a good translation as the
product of the probabilities that each target language word is an appropriate translation of
some source language word. For this we need to know, for every source language word, the
probability of it mapping to each possible target language word.
Where do we get these probabilities? They can be computed from bilingual corpora, however
this is not trivial, since bilingual corpora do not come with annotations specifying which word
maps to which. Solving this problem requires first solving the problem of sentence alignment
in a bilingual corpus. The second problem, word alignment, that is, determining which
word(s) of the target correspond to each source language word or phrase, is rather more difficult,
and is often addressed with EM methods.

19.4.3 IBM Alignment Models

IBM alignment models are a sequence of increasingly complex models used in statistical machine
translation to train a translation model and an alignment model, starting with lexical translation
probabilities and moving to reordering and word duplication.

• Model 1: lexical translation

• Model 2: additional absolute alignment model

• Model 3: extra fertility model

• Model 4: added relative alignment model

• Model 5: fixed deficiency problem.

• Model 6: Model 4 combined with a HMM alignment model in a log linear way

IBM Model 1 is weak in terms of conducting reordering or adding and dropping words. In
most cases, words that follow each other in one language would have a different order after
translation, but IBM Model 1 treats all kinds of reordering as equally possible.
Another problem while aligning is the fertility (the notion that input words would produce
a specific number of output words after translation). In most cases one input word will be
translated into one single word, but some words will produce multiple words or even get dropped
(produce no words at all). The fertility of word models addresses this aspect of translation.
While adding additional components increases the complexity of models, the main principles of
IBM Model 1 are constant.

IBM Model 1

Reference: http://mt-class.org/jhu/slides/lecture-ibm-model1.pdf

Translation probability:
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• for a foreign sentence f = (f1, ..., flf ) of length lf

• to an English sentence e = (e1, ..., ele of length le

• with an alignment of each English word ej to a foreign word fi according to the alignment
function a : j → i

p(e, a|f) =
ε

(lf + 1)le

le∏
j=1

t(ej |fa(j))

• parameter ε is a normalization constant

For example:

p(e, a|f) =
ε

43
× t(the|das)× t(house|Haus)× t(is|ist)× t(small|klein)

=
ε

43
× 0.7× 0.8× 0.8× 0.4

= 0.0028ε

IBM Model 1 and EM

EM algorithm consists of two steps:

1. Expectation step: apply model to the data

• parts of the model are hidden (here: alignments)

• using the model, assign probabilities to possible values

2. Maximization step: estimate model from data

• take assign values as fact

• collect counts (weighted by probabilities)

• estimate model from counts

Iterate these steps until convergence.

Thus, we need to be able to compute:

• Expectation step: probability of assignments

• Maximization step: count collection

Applying the chain rule:
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p(a|e,f) =
p(e, a|f)

p(e|f)

We already have the formula for p(e, a|f). We need to compute p(e|f):

p(e|f) =
∑
a

p(e, a|f)

=

lf∑
a(1)=0

· · ·
lf∑

a(le)=0

p(e, a|f)

=

lf∑
a(1)=0

· · ·
lf∑

a(le)=0

ε

(lf + 1)le

le∏
j=1

t(ej |fa(j))

=
ε

(lf + 1)le

lf∑
a(1)=0

· · ·
lf∑

a(le)=0

le∏
j=1

t(ej |fa(j))

=
ε

(lf + 1)le

le∏
j=1

lf∑
i=0

t(ej |fi)

Note the trick in the last line, which removes the need for an exponential number of products,
making the IBM Model 1 estimation tractable.

Combining what we have:

p(a|e,f) =
p(e, a|f)

p(e|f)

=

ε
(lf+1)le

∏le
j=1 t(ej |fa(j))

ε
(lf+1)le

∏le
j=1

∑lf
i=0 t(ej |fi)

=

le∏
j=1

t(ej |fa(j))∑lf
i=0 t(ej |fi)

Now we have to collect counts. Evidence from a sentence pair e,f that word e is a translation
of word f :

c(e|f ; e,f) =
∑
a

p(a|e,f)

le∑
j=1

δ(e, ej)δ(f, fa(j))

=
t(e|f)∑lf
i=0 t(e|fi)

le∑
j=1

δ(e, ej)

lf∑
i=0

δ(f, fi)

After collecting these counts over a corpus, we can estimate the model:
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t(e|f ; e,f) =

∑
(e,f) c(e|f ; e,f)∑

e

∑
(e,f) c(e|f ; e,f)

19.5 Evaluating MT

Various evaluation metrics are used to predict acceptability. Evaluation metrics for MT intended
to be used raw include the percentage of sentences translated correctly, or nearly correctly, where
correctness depends on both fidelity and fluency. The typical evaluation metric for MT output
to be post-edited is edit cost, either relative to some standard translation via some automatic
measure of edit-distance, or measured directly as the amount of time required to correct the
output to an acceptable level.

BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text
which has been machine-translated from one natural language to another.
Scores are calculated for individual translated segments—generally sentences—by comparing
them with a set of good quality reference translations. Those scores are then averaged over
the whole corpus to reach an estimate of the translation’s overall quality. Intelligibility or
grammatical correctness are not taken into account. BLEU’s output is always a number between
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0 and 1. This value indicates how similar the candidate text is to the reference texts, with values
closer to 1 representing more similar texts.

20 Conclusions

The last week of the course was dedicated to a general overview of the models that are mainly
used nowadays in NLP, i.e. Neural Networks. I’m not going to write anything here about that,
since it was given only a quick overview and the professor said that during the exam only some
generic questions will be asked on this part. By the way, in the 3rd edition of the book there is
a specific chapter on these topics, which I highly recommend you.

This is the end. I hope this file could be helpful to anyone interested in NLP. Please, if you
notice something wrong, contact me via email: 29mett@gmail.com
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